Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1257-1262

Article title

H₂ Interaction with rm C₂H₂TM (TM = Sc, Ti, V) Complex Using Quantum Chemical Methods

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work reports a comparative study of hydrogen uptake capacity of early transition metal atom (Sc, Ti and V) attached to light acetylene (C₂H₂) substrate. Using density functional theory and second order Møller-Plesset method, we predict that maximum of five, five and four hydrogen molecules will be adsorbed on C₂H₂Sc, C₂H₂Ti and C₂H₂V complex, respectively, with respective gravimetric hydrogen uptake capacity of 12.43, 12, and 9.48 wt%. All the interactions between hydrogen molecules and organometallic complex are found to be attractive. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap shows that the maximum H₂ adsorbed complexes are kinetically stable. The average binding energies per H₂ molecule for these complexes are within the ideal range for hydrogen storage at ambient conditions. Even after maximum hydrogen molecules adsorption on C₂H₂TM complexes, transition metal atoms remain strongly bound to the C₂H₂ substrate. We have obtained temperature and pressure range over which H₂ adsorption on these three complexes is energetically favorable using the Gibbs free energy corrected H₂ adsorption energy.

Keywords

EN

Year

Volume

129

Issue

6

Pages

1257-1262

Physical description

Dates

published
2016-06
received
2016-01-04
(unknown)
2016-03-28

Contributors

author
  • Department of Physics, The Institute of Science, Fort, Mumbai-400 032, India
author
  • School of Physical Sciences, S.R.T.M. University, Nanded-431 606, India
author
  • Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded-431 606, India
  • Department of Physics, The Institute of Science, Fort, Mumbai-400 032, India

References

  • [1] Q. Dong, W.Q. Tian, D.L. Chen, C.C. Sun, Int. J. Hydrogen En. 34, 5444 (2009), doi: 10.1016/j.ijhydene.2009.04.053
  • [2] V. Kalamse, N. Wadnerkar, A. Deshmukh, A. Chaudhari, Int. J. Hydrogen En. 37, 5114 (2012), doi: 10.1016/j.ijhydene.2011.12.100
  • [3] L.J. Ma, J. Jia, H.S. Wu, Int. J. Hydrogen En. 40, 420 (2015), doi: 10.1016/j.ijhydene.2014.10.136
  • [4] A. Chakraborty, S. Giri, P.K. Chattaraj, Struct. Chem. 22, 823 (2011), doi: 10.1007/s11224-011-9754-7
  • [5] N. Wadnerkar, V. Kalamse, A. Chaudhari, Theor. Chem. Acc. 127, 285 (2010), doi: 10.1007/s00214-009-0714-x
  • [6] V. Kalamse, N. Wadnerkar, A. Chaudhari, J. Phys. Chem. C 114, 4704 (2010), doi: 10.1021/jp910614n
  • [7] E. Durgun, S. Ciraci, W. Zhou, T. Yildirim, Phys. Rev. Lett. 97, 226102 (2006), doi: 10.1103/PhysRevLett.97.226102
  • [8] N. Wadnerkar, V. Kalamse, A.B. Phillips, B.S. Shivaram, A. Chaudhari, Int. J. Hydrogen En. 36, 9727 (2011), doi: 10.1016/j.ijhydene.2011.05.034
  • [9] W. Zhou, T. Yildirim, E. Durgun, S. Ciraci, Phys. Rev. B 76, 085434 (2007), doi: 10.1103/PhysRevB.76.085434
  • [10] N. Wadnerkar, V. Kalamse, A. Chaudhari, J. Comput. Chem. 31, 1656 (2010), doi: 10.1002/jcc.21449
  • [11] C.S. Liu, Z. Zeng, Phys. Rev. B 79, 245419 (2009), doi: 10.1103/PhysRevB.79.245419
  • [12] V. Kalamse, N. Wadnerkar, A. Deshmukh, A. Chaudhari, Int. J. Hydrogen En. 37, 3727 (2012), doi: 10.1016/j.ijhydene.2011.05.061
  • [13] L.J. Ma, J. Jia, H.S. Wu, Y. Ren, Int. J. Hydrogen En. 38, 16185 (2013), doi: 10.1016/j.ijhydene.2013.09.151
  • [14] N. Wadnerkar, V. Kalamse, A. Chaudhari, Int. J. Hydrogen En. 36, 664 (2011), doi: 10.1016/j.ijhydene.2010.09.081
  • [15] P.F. Wecka, T.J.D. Kumar, E. Kim, N. BalakrishnanJ. Chem. Phys. 126, 094703 (2007), doi: 10.1063/1.2710264
  • [16] N. Wadnerkar, V. Kalamse, A. Chaudhari, Struct. Chem. 24, 369 (2013), doi: 10.1007/s11224-012-0082-3
  • [17] J.H. Guo, W.D. Wu, H. Zhang, Struct. Chem. 20, 1107 (2009), doi: 10.1007/s11224-009-9517-x
  • [18] A. Mavrandonakis, W. Klopper, J. Phys. Chem. C 112, 11580 (2008), doi: 10.1021/jp8021369
  • [19] B. Kiran, A.K. Kandalam, P. Jena, J. Chem. Phys. 124, 224703 (2006), doi: 10.1063/1.2202320
  • [20] A.K. Kandalam, B. Kiran, P. Jena, J. Phys. Chem. C 112, 6181 (2008), doi: 10.1021/jp074759
  • [21] P.J.G. Chen, P. Jena, Y. Kawazoe, J. Chem. Phys. 129, 074305 (2008), doi: 10.1063/1.2969108
  • [22] N. Wadnerkar, V. Kalamse, S.L. Lee, A. Chaudhari, J. Comput. Chem. 33, 170 (2011), doi: 10.1002/jcc.21955
  • [23] O. Yasuharu, J. Phys. Chem. C 112, 17721 (2008), doi: 10.1021/jp803766z
  • [24] A.B. Phillips, B.S. Shivaram, Phys. Rev. Lett. 100, 105505 (2008), doi: 10.1103/PhysRevLett.100.105505
  • [25] A.B. Phillips, B.S. Shivaram, G.R. Myneni, Int. J. Hydrogen En. 37, 1546 (2012), doi: 10.1016/j.ijhydene.2011.09.136
  • [26] A.B. Phillips, B.S. Shivaram, Nanotechnology 20, 204020 (2009), doi: 10.1088/0957-4484/20/20/204020
  • [27] G.J. Kubas, R.R. Ryan, B.I. Swanson, P.J. Vergamini, H.J. Wasserman, J. Am. Chem. Soc. 106, 451 (1984), doi: 10.1021/ja00314a049
  • [28] G.J. Kubas, Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic/Plenum, New York 2001
  • [29] A.D. Becke, Phys. Rev. A 38, 3098 (1988), doi: 10.1103/PhysRevA.38.3098
  • [30] A.D. Becke, J. Chem. Phys. 98, 5648 (1993), doi: 10.1063/1.464913
  • [31] A.D. Becke, J. Chem. Phys. 107, 8554 (1997), doi: 10.1063/1.475007
  • [32] C. Møller, M.S. Plesset, Phys. Rev. 46, 0618 (1934), doi: 10.1103/PhysRev.46.618
  • [33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Gaussian Inc., Pittsburgh 2003 http://gaussian.com/g_prod/g09.htm
  • [34] S.F. Boys, F. Bernadi, Mol. Phys. 19, 553 (1970), doi: 10.1080/00268977000101561
  • [35] J.E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem.) 169, 41 (1988), doi: 10.1016/0166-1280(88)80248-3
  • [36] J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980), doi: 10.1021/ja00544a007
  • [37] A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066 (1983), doi: 10.1063/1.445134
  • [38] A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736 (1985), doi: 10.1063/1.449360
  • [39] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985), doi: 10.1063/1.449486
  • [40] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988), doi: 10.1021/cr00088a005
  • [41] F. Weinhold, J.E. Carpenter, in: The Structure of Small Molecules and Ions, Eds. R. Naaman, Z. Vager, Plenum, New York 1988, p. 227

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n635kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.