Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1220-1225

Article title

Structural and Optical Properties of Nanostructured Fe-Doped SnO₂

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nanocrystalline Sn_{1-x}Fe_xO₂ (where x = 0, 0.01, 0.02, 0.03 and 0.04) powders have been successfully synthesized by the hydrothermal method followed by sintering at 1000°C for 3 h. The morphology and structure of the samples have been analyzed by field emission scanning electron microscope and X-ray diffraction, respectively. X-ray diffraction results revealed that all diffraction peaks positions agree well with the reflection of a tetragonal rutile structure of SnO₂ phase without extra peaks. The formation of a tetragonal rutile structure of SnO₂ nanostructures was further supported by the Raman spectra. The band gap of Fe-doped SnO₂ nanoparticles was estimated from the diffuse reflectance spectra using the Kubelka-Munk function and it was decreasing slightly with the increase of Fe ion concentration from 3.59 to 3.52 eV. The variation in band gap is attributed predominantly to the lattice strain and particle size. The presence of chemical bonding was confirmed by the Fourier transform infrared spectra.

Keywords

EN

Contributors

author
  • Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
  • Physics Department, College of Science and Arts, Najran University, P.O. 1988 Najran, KSA
author
  • Chemistry Department, College of Science and Arts, Najran University, P.O. 1988 Najran, KSA
author
  • Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt

References

  • [1] L. Diamandescu, D. Tarabasanu-Mihaila, M. Feder, M. Enculescu, V.S. Teodorescu, S. Constantinescu, T. Popescu, C. Bartha, Zs. Pap, Mater. Chem. Phys. 143, 1540 (2014), doi: 10.1016/j.matchemphys.2013.11.064
  • [2] D.-W. Kim, I.-S. Hwang, S.J. Kwon, H.-Y. Kang, K.-S. Park, Y.-J. Choi, K.-J. Choi, J.-G. Park, Nanoletters 7, 3041 (2007), doi: 10.1021/nl0715037
  • [3] J.Q. Hu, Y. Bando, Q.L. Liu, D. Golberg, Adv. Funct. Mater. 13, 493 (2003), doi: 10.1002/adfm.200304327
  • [4] M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Asiri, Talanta 95, 18 (2012), doi: 10.1016/j.talanta.2012.03.027
  • [5] J. Mazloom, F.E. Ghodsi, H. Golmojdeh, J. Alloys Comp. 639, 393 (2015), doi: 10.1016/j.jallcom.2015.03.184
  • [6] M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Takur, G. Lawes, R. Naik, V.M. Naik, P.P. Vaishnava, Appl. Phys. Lett. 93, 231909 (2008), doi: 10.1063/1.3042163
  • [7] C.J. Murphy, J.L. Coffer, Appl. Spectrosc. 56, 16A (2002), doi: 10.1366/0003702021954214
  • [8] G. Turgut, E.F. Keskenler, S. Aydın, D. Tatar, E. Sonmez, S. Dogan, B. Duzgun, Rare Met. 33, 433 (2014), doi: 10.1007/s12598-013-0055-8
  • [9] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J. Phys. Chem. Solids 68, 1981 (2007), doi: 10.1016/j.jpcs.2007.06.024
  • [10] M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005), doi: 10.1016/j.progsurf.2005.09.002
  • [11] C. Kılıç, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002), doi: 10.1103/PhysRevLett.88.095501
  • [12] K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30, 97 (2014), doi: 10.1016/j.jmst.2013.09.019
  • [13] H. Jin, Y. Xu, G. Pang, W. Dong, Q. Wan, Y. Sun, S. Feng, Mater. Chem. Phys. 85, 58 (2004), doi: 10.1016/j.matchemphys.2003.12.006
  • [14] J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Phys. Rev. B 72, 075203 (2005), doi: 10.1103/PhysRevB.72.075203
  • [15] G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet, J. Morante, Thin Solid Films 467, 209 (2004), doi: 10.1016/j.tsf.2004.03.028
  • [16] H. Zhu, D. Yang, G. Yu, H. Zhang, K. Yao, Nanotechnology 17, 2386 (2006), doi: 10.1088/0957-4484/17/9/052
  • [17] B.M. Matin, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, A.A. Firooz, Sens. Actuat. B 151, 140 (2010), doi: 10.1016/j.snb.2010.09.033
  • [18] A. Kawai-Nakamura, T. Sato, K. Sue, S. Tanaka, K. Saitoh, K. Aida, T. Hiak, Mater. Lett. 62, 3471 (2008), doi: 10.1016/j.matlet.2008.02.081
  • [19] C. Lazau, L. Mocanu, I. Miron, P. Sfirloaga, G. Tanasie, C. Tatu, A. Gruia, I. Grozescu, Digest J. Nanomater. Biostruct. 2, 257 (2007)
  • [20] K.M. Reddy, D. Guin, S.V. Manorama, A.R. Reddy, J. Mater. Res. 19, 2567 (2004), doi: 10.1557/JMR.2004.0335
  • [21] H. Zhang, N. Du, B. Chen, T. Cui, D. Yang, Mater. Res. Bull. 43, 3164 (2008), doi: 10.1016/j.materresbull.2007.12.015
  • [22] M.V. Vaishampayan, R.G. Deshmukh, P. Walke, I.S. Mulla, Mater. Chem. Phys. 109, 230 (2008), doi: 10.1016/j.matchemphys.2007.11.024
  • [23] S. Rani, S.C. Roy, M.C. Bhatnagar, Sens. Actuat. B 122, 204 (2007), doi: 10.1016/j.snb.2006.05.032
  • [24] T.N. Soitah, C. Yang, L. Sun, Mater. Sci. Semicond. Proc. 13, 125 (2010), doi: 10.1016/j.mssp.2010.03.002
  • [25] A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, J. Appl. Phys. 90, 1550 (2001), doi: 10.1063/1.1385573
  • [26] X. Mathew, J.P. Enriquez, C. Mejía-García, G. Contreras-Puente, M.A. Cortes-Jacome, J.A.T. Antonio, J. Hays, A. Punnoose, J. Appl. Phys. 100, 073907 (2006), doi: 10.1063/1.2357635
  • [27] P.S. Peercy, B. Morosin, Phys. Rev. B 7, 2779 (1973), doi: 10.1103/PhysRevB.7.2779
  • [28] S.K. Pillai, L.M. Sikhwivhilu, T.K. Hillie, Mater. Chem. Phys. 120, 619 (2010)
  • [29] J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Ceram. Int. 38, 5563 (2012), doi: 10.1016/j.ceramint.2012.03.075
  • [30] C. Aydın, M.S. Abd El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013), doi: 10.1016/j.optlastec.2012.11.004
  • [31] G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. 2, 17 (2012), doi: 10.1186/2228-5326-2-17
  • [32] V. Senthilkumar, K. Senthil, P. Vickraman, Mater. Res. Bull. 47, 1051 (2012), doi: 10.1016/j.materresbull.2011.12.040
  • [33] R. López, R. Gómez, J. Sol-Gel Sci. Technol. 61, 1 (2012), doi: 10.1007/s10971-011-2582-9
  • [34] A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Nanomater. Nanotechnol. 1, 29 (2011), doi: 10.5772/50948
  • [35] B. Nandan, B. Venugopal, S. Amirthapandian, B.K. Panigrahi, P. Thangadurai, J. Nanopart. Res. 15, 1999 (2013), doi: 10.1007/s11051-013-1999-1
  • [36] T.N. Soitah, C. Yang, L. Sun, Mater. Sci. Semicond. Proc. 13, 125 (2010), doi: 10.1016/j.mssp.2010.03.002
  • [37] M. Ashokkumar, S. Muthukumaran, Superlatt. Microstruct. 69, 53 (2014), doi: 10.1016/j.spmi.2014.02.002
  • [38] M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, A.A. Ismail, J. Mol. Cat. A Chem. 397, 19 (2015), doi: 10.1016/j.molcata.2014.10.027
  • [39] S. Gnanam, V. Rajendran, J. Sol-Gel Sci. Technol. 56, 128 (2010), doi: 10.1007/s10971-010-2285-7
  • [40] S.H. Mohamed, J. Alloys Comp. 510, 119 (2012), doi: 10.1016/j.jallcom.2011.09.006
  • [41] K. Srinivas, S.M. Rao, P.V. Reddy, Nanoscale 3, 642 (2011), doi: 10.1039/C0NR00597E

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n628kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.