Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1197-1200

Article title

Modelling of Critical Current Density of Sintered Ag Added Bulk MgB₂

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Magnetic field dependence of critical current density (J_{c}) of bulk MgB₂ material at 20 K is reported. The selected sintered MgB₂ materials contained various amounts of silver. The silver added samples possess always a higher critical current density than the silver free ones. The critical current density increased with silver content and continuously decreased with increase of magnetic field. Further, the normalized volume pinning force density, f_{p}=F_{p}/F_{p,max}, versus reduced field h = H_{a}/H_{irr} for silver free and silver added samples suggested that grain boundary pinning is dominant. In essence, the model of thermal activated flux motion was successfully applied to fit the critical current density of the MgB₂ materials.

Keywords

EN

Year

Volume

129

Issue

6

Pages

1197-1200

Physical description

Dates

published
2016-06
received
2016-01-16
(unknown)
2016-05-25

Contributors

author
  • E300 Huron Str., M5S 3J6, Faculty of Arts and Science, University of Toronto, Canada

References

  • [1] J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Phys. Rev. Lett. 86, 4656 (2001), doi: 10.1103/PhysRevLett.86.4656
  • [2] R.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001), doi: 10.1038/35065039
  • [3] B.A. Glowacki, N. Majoros, M. Vickers, J.E. Evetts, Y. Shi, I. McDougall, Supercond. Sci. Technol. 14, R115 (2001), doi: 10.1088/0953-2048/14/4/304
  • [4] G. Giunchi, G. Ripamonti, T. Cavallin, E. Bassani, Cryogenics 46, 237 (2006), doi: 10.1016/j.cryogenics.2005.11.011
  • [5] K. Kajikawa, T. Nakamura, IEEE Trans. Appl. Supercond. 19, 1669 (2009), doi: 10.1109/tasc.2009.2017840
  • [6] K. Vinod, R.G. Abhilash Kumar, U. Syamaprasad, Supercond. Sci. Technol. 20, R1 (2007), doi: 10.1088/0953-2048/20/1/r01
  • [7] E. Perini, G. Ginuchi, Supercond. Sci. Technol. 22, 045021 (2009), doi: 10.1088/0953-2048/22/4/045021
  • [8] M. Muralidhar, A. Ishihara, K. Suzuki, Y. Fukumoto, Y. Yamamoto, M. Tomita, Physica C 494, 85 (2013), doi: 10.1016/j.physc.2013.04.012
  • [9] S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.X. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Appl. Phys. Lett. 81, 3419 (2002), doi: 10.1063/1.1517398
  • [10] J.H. Kim, S. Zhou, M.S.A. Hossain, A.V. Pan, S.X. Dou, Appl. Phys. Lett. 89, 142505 (2006), doi: 10.1063/1.2358947
  • [11] J.H. Durrell, C.E.J. Dancer, A. Dennis, Y. Shi, Z. Xu, A.M. Campbell, N. Hari Bau, R.I. Todd, C.R.M. Grovenor, D.A. Cardwell, Supercond. Sci. Technol. 25, 112002 (2012), doi: 10.1088/0953-2048/25/11/112002
  • [12] M. Muralidhar, K. Inoue, M.R. Koblischka, M. Tomita, M. Murakami, J. Alloys Comp. 608, 102 (2014), doi: 10.1016/j.jallcom.2014.04.017
  • [13] A. Yamamoto, A. Ishihara, M. Tomita, K. Kishio, Appl. Phys. Lett. 105, 032601 (2014), doi: 10.1063/1.4890724
  • [14] M. Santosh, Acta Phys. Pol. A 126, 808 (2014), doi: 10.12693/APhysPolA.126.808
  • [15] M. Santosh, M.R. Koblischka, Europ. J. Phys. Educ. 5, 1 (2014), doi: 10.20308/ejpe.58282
  • [16] M. Santosh, in: Oxide Thin Films, Multilayers, and Nanocomposites, Eds. P. Mele, T. Endo, S. Arisawa, C. Li, T. Tsuchiya, Springer, 2015, p. 97, doi: 10.1007/978-3-319-14478-8
  • [17] M. Muralidhar, K. Inoue, M.R. Koblischka, M. Murakami, J. Adv. Eng. Mater. 17, 831 (2015), doi: 10.1002/adem.201400583
  • [18] D. Chen, R.B. Goldfarb, J. Appl. Phys. 66, 2489 (1989), doi: 10.1063/1.34426
  • [19] T. Naito, T. Sasaki, H. Fujishiro, Supercond. Sci. Technol. 25, 095012 (2012), doi: 10.1088/0953-2048/25/9/095012
  • [20] M. Muralidhar, K. Nozaki, H. Kobayashi, X.L. Zeng, A. Koblischka Veneva, M.R. Koblischka, K. Inoue, M. Murakami, J. Alloys Comp. 649, 833 (2014), doi: 10.1016/j.jallcom.2015.07.191
  • [21] D. Kumar, S.J. Pennycook, J. Narayan, H. Wang, A. Tiwari, Supercond. Sci. Technol. 16, 455 (2003), doi: 10.1088/0953-2048/16/4/306
  • [22] K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Supercond. Sci. Technol. 16, 1052 (2003), doi: 10.1088/0953-2048/16/9/315
  • [23] C.E. Cunningham, C. Petrovic, G. Lapertot, S.L. Bud'ko, F. Laabs, W. Straszheim, D.K. Finnemore, P.G. Canfield, Physica C 353, 5 (2001), doi: 10.1016/s0921-4534(01)00397-5
  • [24] J. Shimoyama, K. Hanafusa, A. Yamamoto, Y. Katsura, S. Horii, K. Kisho, H. Kumakura, J. Phys. Conf. Ser. 97, 012255 (2008), doi: 10.1088/1742-6596/97/1/012255
  • [25] J.-C. Grivel, A. Abrahamsen, J. Bednarcik, Supercond. Sci. Technol. 21, 035006 (2008), doi: 10.1088/0953-2048/21/3/035006
  • [26] V. Sandu, Mod. Phys. Lett. 26, 1230007 (2012), doi: 10.1142/S0217984912300074
  • [27] M.R. Koblischka, A. Wiederhold, M. Muralidhar, K. Inoue, T. Hauet, B. Douine, K. Berger, M. Murakami, U. Hartmann, IEEE Trans. Magn. 50, 9000504 (2014), doi: 10.1109/tmag.2014.2323995
  • [28] G.K. Perkins, A.D. Caplin, Phys. Rev. B 51, 8513 (1995), doi: 10.1103/PhysRevB.51.851
  • [29] G.K. Perkins, A.D. Caplin, Phys. Rev. B 54, 12551 (1996), doi: 10.1103/PhysRevB.54.12551
  • [30] M. Jirsa, L. Pust, D. Dlouhy, M.R. Koblishchka, Phys. Rev. B 55, 3276 (1997), doi: 10.1103/PhysRevB.55.3276

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n623kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.