PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1147-1150
Article title

Optical and Structural Properties of Cu Doped ZnS Nanocrystals: Effect of Temperature and Concentration of Capping Agent

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We have provided the Cu doped zinc sulfide (ZnS:Cu) nanoparticles using a wet chemical synthesis. In principle, the nanoparticles are provided by mixing the reactants in a double distilled water solvent. We have used the mercaptopropionic acid as the capping agent. We have obtained the physical properties of the nanoparticles using the methods: UV absorption, photoluminescence spectroscopy, and X-ray diffraction analysis. The average size of nanoparticles is obtained in the range 3-6 nm. In addition, the X-ray diffraction pattern of ZnS:Cu nanoparticles reveals a zinc-blende crystal structure at room temperature.
Keywords
Year
Volume
129
Issue
6
Pages
1147-1150
Physical description
Dates
published
2016-06
received
2015-05-22
References
  • [1] Phosphor Handbook, Eds. W.M. Yen, S. Shionoya, CRC Press, Boca Raton, FL 1999
  • [2] A. Kassim, S. Nagalingam, H.S. Min, N. Karrim, Arab. J. Chem. 3, 243 (2010), doi: 10.1016/j.arabjc.2010.05.002
  • [3] E. Schlam, Proc. IEEE 61, 894 (1973), doi: 10.1109/PROC.1973.9179
  • [4] L. Sun, C. Liu, C. Liao, C. Yan, J. Mater. Chem. 9, 1655 (1999), doi: 10.1039/A903761F
  • [5] J. Xu, W. Ji, J. Mater. Sci. Lett. 18, 115 (1999), doi: 10.1023/A%3A1006606316840
  • [6] P. Townsend, P. Chandler, L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge 2006
  • [7] J.P. Borah, K.C. Sarma, Acta Phys. Pol. A 114, 713 (2008), doi: 10.12693/APhysPolA.114.713
  • [8] A. Fukuoka, J.I. Kimura, T. Oshio, Y. Sakamoto, M. Ichikawa, J. Am. Chem. Soc. 129, 10120 (2007), doi: 10.1021/ja0703123
  • [9] I.I. Slowing, B.G. Trewyn, S. Giri, V.S.Y. Lin, Adv. Funct. Mater. 17, 1225 (2007), doi: 10.1002/adfm.200601191
  • [10] M. Vallet-Regi, F. Balas, D. Across, Angew. Chem. Int. Ed. 46, 7548 (2007), doi: 10.1002/anie.200604488
  • [11] B.G. Trewyn, I.I. Slowing, S. Giri, H.T. Chen, V.S.Y. Lin, Acc. Chem. Res. 40, 846 (2007), doi: 10.1021/ar600032u
  • [12] P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, Appl. Phys. A. 73, 455 (2001), doi: 10.1007/s003390100733
  • [13] W. Sang, Y. Qian, J. Min, D. Li, L. Wang, W. Shi, L. Yinfeng, Solid State Commun. 121, 475 (2002), doi: 10.1016/j.scient.2012.05.008
  • [14] Bohua Dong, Lixin Cao, Ge Su, Wei Liu, Hua Qu, Daixun Jiang, J. Colloid Int. Sci. 339, 78 (2009), doi: 10.1016/j.jcis.2009.07.039
  • [15] N. Uzar, S. Okur, M.C. Arikan, Sens. Actuat. A Phys. 167, 188 (2011), doi: 10.1016/j.sna.2010.10.005
  • [16] L. Luo, H. Chen, L. Zhang, K. Xu, Y. Lv, Anal. Chim. Acta 635, 183 (2009), doi: 10.1016/j.aca.2009.01.020
  • [17] M. Geszke, M. Murias, L. Balan, G. Medjahdi, J. Korczynski, M. Moritz, J. Lulek, R. Schneider, Acta Biomater. 7, 1327 (2011), doi: 10.1016/j.actbio.2010.10.012
  • [18] Z.G. Zhao, F.X. Geng, T. Congh, J.B. Bai, H.M. Cheng, Nanotechnology 17, 4731 (2006), doi: 10.1088/0957-4484/17/18/034
  • [19] Y.D. Li, Y. Ding, Y. Zhang, Y.T. Qian, J. Phys. Chem. Solids 60, 13 (1999), doi: 10.1016/S0022-3697(98)00247-9
  • [20] S.-H. Yu, M. Yoshimura, Adv. Mater. 14, 296 (2002), doi: 10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6
  • [21] J.P. Li, Y. Xu, D. Wu, Y.H. Sun, Solid State Commun. 130, 619 (2004), doi: 10.1016/j.ssc.2004.03.016
  • [22] M. Azad Malik, N. Revaprasadu, P. O'Brien, Chem. Mater. 13, 913 (2001), doi: 10.1021/cm0011662
  • [23] W. Liu, Mater. Lett. 60, 551 (2006), doi: 10.1016/j.matlet.2005.09.033
  • [24] A.K. Verma, T.B. Rauchfuss, S.R. Wilson, Inorg. Chem. 34, 3072 (1995), doi: 10.1021/ic00115a038
  • [25] A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, M. Mostafavi, Chem. Phys. Lett. 422, 25 (2006), doi: 10.1016/j.cplett.2006.02.013
  • [26] P.K. Ghosh, S. Jana, S. Nandy, K.K. Chattopadhyay, Mater. Res. Bull. 42, 505 (2007), doi: 10.1016/j.materresbull.2006.06.019
  • [27] J. Nanda, S. Sapra, D.D. Sarma, N. Chandrasekharan, G. Hodes, Chem. Mater. 12, 1018 (2000), doi: 10.1021/cm990583f
  • [28] W. Vogel, P.H. Borse, N. Deshmukh, S.K. Kulkarni, Langmuir 16, 2032 (2000), doi: 10.1021/la9910071
  • [29] X. Zhang, H. Song, L. Yu, T. Wang, X. Ren, X. Kong, Y. Xie, X. Wang, J. Lumin. 118, 251 (2006), doi: 10.1016/j.jlumin.2005.07.003
  • [30] J. Zhang, Z. Lin, Y. Lan, G. Ren, D. Chen, F. Huang, M. Hong, J. Am. Chem. Soc. 128, 12981 (2006), doi: 10.1021/ja062572a
  • [31] J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125, 11100 (2003), doi: 10.1021/ja0357902
  • [32] J. Hasanzadeh, S. Farjami Shayesteh, Opt. Appl. XLI, 921 (2011) http://if.pwr.wroc.pl/~optappl/pdf/2011/no4/optappl_4104p921.pdf
  • [33] L.E. Brus, J. Chem. Phys. 80, 4403 (1984), doi: 10.1063/1.447218
  • [34] Y.S. Yuang, F.Y. Chen, Y.Y. Lee, C.L. Liu, J. Appl. Phys. 76, 3041 (1994), doi: 10.1063/1.357483
  • [35] Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 22a, Springer Verlag, Berlin 1987, p. 168
  • [36] J. Hasanzadeh, A. Taherkhani, M. Ghorbani, Chin. J. Phys. 51, 540 (2013) http://psroc.org/cjp/download.php?type=paper&vol=51&num=3&page=540
  • [37] A.D. Dinsmore, D.S. Hsu, S.B. Qadri, J.O. Cross, T.A. Kennedy, H.F. Gray, B.R. Ratna, J. Appl. Phys. 88, 4985 (2000), doi: 10.1063/1.1314326
  • [38] J.M. Hwang, M.O. Oh, I. Kim, J.K. Lee, C.S. Ha, Curr. Appl. Phys. 5, 31 (2005), doi: 10.1016/j.cap.2003.11.075
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n612kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.