PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1131-1140
Article title

Scattering Properties of Argon Gas in the Temperature Range 87.3-120 K

Content
Title variants
Languages of publication
EN
Abstracts
EN
A theoretical model, based on the Galitskii-Migdal-Feynman formalism, is introduced for determining the scattering properties of argon gas, especially the "effective" total, viscosity and average cross-sections. The effective phase shifts are used to compute the quantum second virial coefficient in the temperature range 87.3-120 K. The sole input is the Hartree-Fock dispersion (HFD-B3) potential. The thermophysical properties of the gas are then calculated. The results are in good agreement with experimental data.
Keywords
EN
Publisher

Year
Volume
129
Issue
6
Pages
1131-1140
Physical description
Dates
published
2016-06
received
2015-01-29
(unknown)
2016-03-13
Contributors
author
  • Applied Physics Department, Faculty of Science, Tafila Technical University, Tafila, Jordan
author
  • Applied Physics Department, Faculty of Science, Tafila Technical University, Tafila, Jordan
  • Department of Computer Science, College of Shari'a and Islamic Studies in Al Ahsaa, Al Imam Muhammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
author
  • Department of Physics, Faculty of Engineering Technology, Al-Balqa' Applied University, Amman, Jordan
author
  • Department of Physics, Faculty of Science, The University of Jordan, Amman, Jordan
References
  • [1] F. Mozaffari, J. Phys. Chem. Electrochem. 2, 2109 (2011)
  • [2] K. Gilles, Weld. Des. Fabric. 11, 12 (2006)
  • [3] A.E. Nasrabad, R. Laghaei, U.K. Deiters, J. Chem. Phys. 121, 6423 (2004), doi: 10.1063/1.1783271
  • [4] A.E. Nasrabad, R. Laghaei, J. Chem. Phys. 125, 084510 (2006), doi: 10.1063/1.2338310
  • [5] E. Vogel, B. Jäger, R. Hellmann, E. Bich, Mol. Phys. 108, 3335 (2010), doi: 10.1080/00268976.2010.507557
  • [6] F. Mozaffari, Z.Z. Sharabadi, J. Phys. Chem. Electrochem. 1, 139 (2011)
  • [7] A.L. Gosman, R.D. McCarty, J.G. Hust, National Standard Reference Data Series - National Bureau of Standards 27, 1969
  • [8] Ch. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999), doi: 10.1063/1.556037
  • [9] F. Aitken, N. Bonifaci, A. Denat, F. Volino, arXiv: 1504.00633v1, 2015 http://arXiv.org/abs/1504.00633v1
  • [10] H.B. Ghassib, R.F. Bishop, M.R. Strayer, J. Low Temp. Phys. 23, 393 (1976), doi: 10.1007/BF00116928
  • [11] R.F.Bishop, H.B.Ghassib, M.R. Strayer,Phys. Rev. A 13, 1570 (1976), doi: 10.1103/PhysRevA.13.1570
  • [12] B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, J. Low Temp. Phys. 161, 348 (2010), doi: 10.1007/s10909-010-0211-6
  • [13] H.B. Ghassib, A.S. Sandouqa, B.R. Joudeh, S.M. Mosameh, Canad. J. Phys. 92, 997 (2014), doi: 10.1139/cjp-2013-0411
  • [14] S.M. Mosameh, A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, J. Low Temp. Phys. 175, 523 (2014), doi: 10.1007/s10909-013-1079-z
  • [15] R.A. Aziz, M.J. Slaman, J. Chem. Phys. 92, 1030 (1990), doi: 10.1063/1.458165
  • [16] S. Geltman, Topics in Atomic Collision Theory, Krieger Publ. Co., Florida 1997
  • [17] E. Merzbacher, Quantum Mechanics, 3rd ed., Wiley, New York 1998
  • [18] R.J. Kanzleiter, D.P. Stotler, C.F.F. Karney, D. Steiner, Phys. Plasmas 7, 5064 (2000), doi: 10.1063/1.1321018
  • [19] M.J. Wright, D. Bose, G.E. Palmer, E. Levin, AIAA J. 43, 2558 (2005), doi: 10.2514/1.16713
  • [20] B.R. Joudeh, Physica B Condens. Matter 421, 41 (2013), doi: 10.1016/j.physb.2013.04.014
  • [21] M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys. Rev. A 46, 6956 (1992), doi: 10.1103/PhysRevA.46.6956
  • [22] R.P. Feynman, Statistical Mechanics, Benjamin, Reading, MA 1992
  • [23] E.V.L. Mello, J.J. Rehr, O.E. Vilches, Phys. Rev. B 28, 3759 (1983), doi: 10.1103/PhysRevB.28.3759
  • [24] E. Beth, G.E. Uhlenbeck, Physica 3 8, 729 (1936), doi: 10.1016/S0031-8914(36)80346-2
  • [25] V. Seguin, H. Guignes, C. Lhuillier, Phys. Rev. B 36, 141 (1987), doi: 10.1103/PhysRevB.36.141
  • [26] S.P. Dardi, S.J. Dahler, Theor. Chem. Acta 82, 117 (1992), doi: 10.1007/BF01113133
  • [27] A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York 1971
  • [28] H.T. Stoof, M. Bijlsma, M. Houbiers, J. Res. Natl. Inst. Stand. Technol. 101, 443 (1996) http://physics.nist.gov/Pubs/Bec/j4stoof.pdf
  • [29] C. Kittel, H. Kroemer, Thermal Physics, Freeman, New York 1980
  • [30] R. Feltgen, H. Pauly, F. Torello, H. Vehmeyer, Phys. Rev. Lett. 30, 820 (1973), doi: 10.1103/physrevlett.30.820
  • [31] A.F. Borghesani, J. Electrostat. 53, 89 (2001), doi: 10.1016/S0304-3886(01)00133-4
  • [32] A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, Chem. Phys. Lett. 490, 172 (2010), doi: 10.1016/j.cplett.2010.03.052
  • [33] W.A. Kampe, D.E. Oates, W. Schrader, H.G. Bennewitz, Chem. Phys. Lett. 18, 323 (1973), doi: 10.1016/0009-2614(73)80179-4
  • [34] T.K. Lim, S.Y. Larsen, J. Chem. Phys. 74, 4997 (1981), doi: 10.1063/1.441751
  • [35] R.S. Grace, W.M. Pope, D.L. Johnson, J.G. Skofronick, Phys. Rev. A 14, 1006 (1976), doi: 10.1103/PhysRevA.14.1006
  • [36] P. Cantini, M.G. Dondi, G. Scoles, F. Torello, J. Chem. Phys. 56, 1946 (1972), doi: 10.1063/1.1677479
  • [37] R. Feltgen, H. Krist, K.A. Köhler, H. Pauly, F. Torello, J. Chem. Phys. 76, 2360 (1982), doi: 10.1063/1.443264
  • [38] M.G. Dondi, G. Scoles, F. Torello, J. Chem. Phys. 51, 392 (1969), doi: 10.1063/1.1671737
  • [39] P.J. Gans, Phys. Chem. l 25, 0651 (1994) http://scholar.chem.nyu.edu/0652/notes/pdf/realgas94.pdf
  • [40] B.R. Stewart, T.R.J. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989), doi: 10.1063/1.555829
  • [41] L.H. Nosanow, J. Low Temperature Phys. 26, 613 (1977), doi: 10.1007/BF00655434
  • [42] K.C. Kan, Chin. J. Phys. 17, 32 (1979) http://psroc.org/cjp/issues.php?vol=17&num=1
  • [43] F. Reif, Fundamentals of Thermal Physics, McGraw-Hill, New York 1965
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n610kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.