Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 6 | 1100-1104

Article title

The Finite-Size Scaling Study of Five-Dimensional Ising Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
The five-dimensional ferromagnetic Ising model is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice is found to be T^{χ} (∞=8.7811 (1) using 4 ≤ L ≤ 8 which is also in very good agreement with the precise result. The value of the field critical exponent (δ =3.0067(2)) is good agreement with δ =3 which is obtained from scaling law of Widom. The exponents in the finite-size scaling relations for the magnetic susceptibility and the order parameter at the infinite-lattice critical temperature are computed to be 2.5080 (1), 2.5005 (3) and 1.2501 (1) using 4 ≤ L ≤ 8, respectively, which are in very good agreement with the theoretical predictions of 5/2 and 5/4. The finite-size scaling plots of magnetic susceptibility and the order parameter verify the finite-size scaling relations about the infinite-lattice temperature.

Keywords

Contributors

author
  • Faculty of Arts and Sciences, Department of Physics, Gazi University, Ankara, Turkey
author
  • Faculty of Arts and Sciences, Department of Physics, Gazi University, Ankara, Turkey
author
  • Faculty of Arts and Sciences, Department of Physics, Ahi Evran University, Kirsehir, Turkey

References

  • [1] H.W.J. Blöte, R.H. Swendsen, Phys. Rev. B 22, 4481 (1980), doi: 10.1103/PhysRevB.22.4481
  • [2] M. Creutz, Ann. Phys. 167, 62 (1986), doi: 10.1016/S0003-4916(86)80006-9
  • [3] Z. Merdan, C. Kürkçü, M.K. Oztürk, Low Temp. Phys. 40, 1360 (2014), doi: 10.1063/1.4902227
  • [4] W.M. Lang, D. Stauffer, J. Phys. A Math. Gen. 20, 5413 (1987), doi: 10.1088/0305-4470/20/15/055
  • [5] M.S. Kochmanski, J. Phys. A Math. Gen. 32, 1251 (1991), doi: 10.1088/0305-4470/32/7/014
  • [6] M.S. Kochmanski, Acta Phys. Pol. B 28, 1071 (1997)
  • [7] Sh. Ranjbar, G.A. Parsafar, J. Phys. Chem. B 103, 7514 (1999), doi: 10.1021/jp9902203
  • [8] T. Stošić, B.D. Stošić, F.G.B. Moreira, Phys. Rev. E 58, 80 (1998), doi: 10.1103/PhysRevE.58.80
  • [9] K. Binder, D.P. Landau, Phys. Rev. B 21, 1941 (1980), doi: 10.1103/PhysRevB.21.1941
  • [10] W. Kinzel, Phys. Rev B 19, 4584 (1979), doi: 10.1103/PhysRevB.19.4584
  • [11] B. Kutlu, M. Kasap, S. Turan, Int. J. Mod. Phys. C 11, 561 (2000), doi: 10.1142/S012918310000047X
  • [12] D.C. Rapaport, C. Domb, J. Phys. C 4, 2684 (1971), doi: 10.1088/0022-3719/4/16/033
  • [13] T. Çelik, Y. Gündüç, M. Aydın, Physica A 238, 353 (1997), doi: 10.1016/S0378-4371(97)00004-6
  • [14] N. Aktekin, Ş. Erkoç, M. Kalay, Int. J. Mod. Phys. C 10, 1237 (1999), doi: 10.1142/S0129183199001005
  • [15] N. Aktekin, J. Stat. Phys. 104, 1397 (2001), doi: 10.1023/A:1010457905088
  • [16] N. Aktekin, Annual Reviews of Computational Physics, Ed. D. Stauffer, World Sci., Singapore 2000
  • [17] N. Aktekin, Physica A 232, 397 (1996), doi: 10.1016/0378-4371(96)00122-7
  • [18] N. Aktekin, A. Günen, Z. Sağlam, Int. J. Mod. Phys. C 10, 875 (1999), doi: 10.1142/S012918319900067X
  • [19] Z. Merdan, A. Günen, G. Mülazımoğlu, Int. J. Mod. Phys. C 16, 1269 (2005), doi: 10.1142/S012918310500787X
  • [20] Z. Merdan, R. Erdem, Phys. Lett. A 330, 403 (2004), doi: 10.1016/j.physleta.2004.08.030
  • [21] Z. Merdan, M. Bayırlı, Appl. Math. Comp. 167, 212 (2005), doi: 10.1016/j.amc.2004.06.092
  • [22] Z. Merdan, A. Duran, D. Atille, G. Mülazımoğlu, A. Günen, Physica A 366, 265 (2006), doi: 10.1016/j.physa.2005.10.035
  • [23] Z. Merdan, A. Günen, Ş. Çavdar, Physica A 359, 415 (2006), doi: 10.1016/j.physa.2005.04.028
  • [24] Z. Merdan, D. Atille, Physica A 376, 327 (2007), doi: 10.1016/j.physa.2006.10.037
  • [25] Z. Merdan, D. Atille, Mod. Phys. Lett. B 21, 215 (2007), doi: 10.1142/S0217984907012529
  • [26] M. Kalay, Z. Merdan, Mod. Phys. Lett. B 21, 1923 (2007), doi: 10.1142/S0217984907014279
  • [27] P.H. Lundow, K. Markström, Nucl. Phys. B 895, 305 (2015), doi: 10.1016/j.nuclphysb.2015.04.013
  • [28] P.H. Lundow, K. Markström, Nucl. Phys. B 889, 249 (2014), doi: 10.1016/j.nuclphysb.2014.10.011
  • [29] P.H. Lundow, K. Markström, Phys. Rev. E 91, 022112 (2015), doi: 10.1103/PhysRevE.91.022112
  • [30] P.H. Lundow, K. Markström, Nucl. Phys. B 845, 120 (2011), doi: 10.1016/j.nuclphysb.2010.12.002
  • [31] P.H. Lundow, A. Rosengren, Philos. Mag. 90, 3313 (2010), doi: 10.1080/14786435.2010.484406
  • [32] P.H. Lundow, A. Rosengren, Philos. Mag. 93, 1755 (2013), doi: 10.1080/14786435.2012.750770
  • [33] K. Binder, M. Nauenberg, V. Privman, A.P. Young, Phys. Rev. B 31, 1498 (1985), doi: 10.1103/PhysRevB.31.1498
  • [34] K. Binder, Z. Phys. B 61, 13 (1985), doi: 10.1007/BF01308937
  • [35] Finite-Size Scaling and Numerical Simulation of Statistical Systems, Ed. V. Privman, World Sci., Singapore 1990
  • [36] D. Jasnow, V. Privman, in: Finite-Size Scaling and Numerical Simulation of Statistical Systems, World Sci., Singapore 1990
  • [37] Ch. Rickwardt, P. Nielaba, K. Binder, Ann. Phys. 3, 483 (1994), doi: 10.1002/andp.19945060606
  • [38] G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 54, R3698 (1996), doi: 10.1103/PhysRevB.54.R3698
  • [39] G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 55, 6082 (1997), doi: 10.1103/PhysRevB.55.6082
  • [40] H.W.J. Böte, E. Luijten, Europhys. Lett. 38, 565 (1997), doi: 10.1209/epl/i1997-00284-x
  • [41] M. Cheon, I. Chang, D. Stauffer, Int. J. Mod. Phys. C 10, 131 (1999), doi: 10.1142/S0129183199000085
  • [42] K.K. Mon, Europhys. Lett. 34, 399 (1996), doi: 10.1209/epl/i1996-00470-4
  • [43] A.J. Guttmann, J. Phys. A 14, 233 (1981), doi: 10.1088/0305-4470/14/1/023
  • [44] C. Münkel, D.W. Heermann, J. Adler, M. Gofman, D. Stauffer, Physica A 193, 540 (1993), doi: 10.1016/0378-4371(93)90490-U
  • [45] P. Butera, M. Pernici, Phys. Rev. E 86, 011139 (2012), doi: 10.1103/PhysRevE.86.011139
  • [46] D. Stauffer, R. Knecht, Int. J. Mod. Phys. C 7, 893 (1996), doi: 10.1142/S0129183196000740
  • [47] R.B. Baxter, Exactly Solved Modern Statistical Mechanics, Oxford University Press, Oxford 1989
  • [48] Critical Phenomena, Proceedings, Stellenbosch, Ed. F.J.W. Hahne, Springer-Verlag, Berlin 1983
  • [49] E. Luijten, K. Binder, H.W.J. Blöte, Eur. Phys. J. B 9, 289 (1999), doi: 10.1007/s100510050768

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n605kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.