Journal
Article title
Title variants
Languages of publication
Abstracts
Empirical studies suggest that word-of-mouth strongly influences the innovation diffusion process and is responsible for the "S" shape of the adoption curve. However, it is not clear how word-of-mouth affects demand curves for innovative products and strategic decisions of producers. Using an agent-based model of innovation diffusion, which links consumer opinions with reservation prices, we show that a relatively strong word-of-mouth effect can lead to the creation of two separated price-quantity regimes, with a nonlinear transition between them. A small shift of the product's market price can result in a drastic change of the demanded quantity and, hence, the revenues of a firm. Using Monte Carlo simulations and mean-field treatment we demonstrate that word-of-mouth may have ambiguous consequences and should be taken into account when designing marketing strategies.
Discipline
Journal
Year
Volume
Issue
Pages
1045-1049
Physical description
Dates
published
2016-05
Contributors
author
- Department of Operations Research, Wrocław University of Technology, Wrocław, Poland
author
- Department of Operations Research, Wrocław University of Technology, Wrocław, Poland
author
- Department of Operations Research, Wrocław University of Technology, Wrocław, Poland
author
- Department of Operations Research, Wrocław University of Technology, Wrocław, Poland
References
- [1] E.M. Rogers, Diffusion of Innovations, The Free Press, New York, NY 2003
- [2] J. Goldenberg, B. Libai, E. Muller, Int. J. Res. Marketing 27, 4 (2010), doi: 10.1016/j.ijresmar.2009.06.006
- [3] R. Peres, E. Muller, V. Mahajan, Int. J. Res. Marketing 27, 91 (2010), doi: 10.1016/j.ijresmar.2009.12.012
- [4] E. Kiesling, M. Güntherand, C. Stummer, L.M. Wakolbinger, Centr. Europ. J. Operat. Res. 20, 183 (2012), doi: 10.1007/s10100-011-0210-y
- [5] A. Kowalska-Pyzalska, K. Ćwik, A. Jędrzejewski, K. Sznajd-Weron, Acta Phys. Pol. A 129, 1055 (2016), doi: 10.12693/APhysPolA.129.1055
- [6] P. Nyczka, K. Sznajd-Weron, J. Statist. Phys. 151, 174 (2013), doi: 10.1007/s10955-013-0701-4
- [7] H.R. Varian, Intermediate Microeconomics. A Modern Approach, 8th ed., W.W. Norton and Co., New York, NY 2010
- [8] P. Nyczka, K. Sznajd-Weron, J. Cisło, Phys. Rev. E 86, 011105 (2012), doi: 10.1103/PhysRevE.86.011105
- [9] P.R. Nail, S.I. Di Domenico, G. MacDonald, Rev. Gen. Psychol. 17, 1 (2013), doi: 10.1037/a0030997
- [10] P.R. Nail, K. Sznajd-Weron, Acta Phys. Pol. A 129, (2016), doi: 10.12693/APhysPolA.129.1050
- [11] F.G. Kaiser, K. Byrka, T. Hartig, Personal. Soc. Psychol. Rev. 14, 351 (2010), doi: 10.1177/1088868310366452
- [12] R. East, K. Hammond, W. Lomax, Int. J. Res. Market. 25, 215 (2008), doi: 10.1016/j.ijresmar.2008.04.001
- [13] A. Kowalska-Styczeń, K. Sznajd-Weron, Adv. Complex Syst. 15, 1250080 (2012), doi: 10.1142/S0219525912500804
- [14] A. Campbell, Am. Econ. Rev. 103, 2466 (2013), doi: 10.1257/aer.103.6.2466
- [15] P. Zeppini, K. Frenken, Working paper 38.15, University of Bath, Department of Economics, http://www.bath.ac.uk/economics/research/working-papers/2015-papers/networks-percolation-demand.pdf, 2015
- [16] K. Sznajd-Weron, J. Szwabiński, R. Weron, PLoS ONE 9, e112203 (2014), doi: 10.1371/journal.pone.0112203
- [17] S. Cantono, G. Silverberg, Technolog. Forecast. Soc. Change 76, 487 (2009), doi: 10.1016/j.techfore.2008.04.010
- [18] M. Hohnisch, S. Pittnauer, D. Stauffer, Industr. Corpor. Change 17, 1001 (2008), doi: 10.1093/icc/dtn031
- [19] C.H. Weiss, J. Poncela-Casasnovas, J.I. Glaser, A.R. Pah, S.D. Persell, D.W. Baker, R.G. Wunderink, L.A. Nunes Amaral, Phys. Rev. X 4, 041008 (2014), doi: 10.1103/PhysRevX.4.041008
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n527kz