Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 5 | 971-979

Article title

Entropy Based Trees to Support Decision Making for Customer Churn Management

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work we analyze empirically customer churn problem from a physical point of view to provide objective, data driven and significant answers to support decision making process in business application. In particular, we explore different entropy measures applied to decision trees and assess their performance from the business perspective using set of model quality measures often used in business practice. Additionally, the decision trees are compared with logistic regression and two machine learning methods - neural networks and support vector machines.

Keywords

Contributors

  • Department of Informatics, Faculty of Applied Informatics and Mathematics, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
author
  • Department of Informatics, Faculty of Applied Informatics and Mathematics, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
author
  • Department of Informatics, Faculty of Applied Informatics and Mathematics, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland

References

  • [1] K. Gajowniczek, T. Ząbkowski, A. Orłowski, Ann. Comp. Sci. Inf. Syst. 5, 39 (2015), doi: 10.15439/2015F121
  • [2] H. Hwang, T. Jung, E. Suh, Expert Syst. Appl. 26, 181 (2006), doi: 10.1016/S0957-4174(03)00133-7
  • [3] S. Hung, D.C. Yen, H. Wang, Expert Syst. Appl. 31, 515 (2002), doi: 10.1016/j.eswa.2005.09.080
  • [4] S. Kim, K.S. Shin, K. Park, Lect. Notes Artif. Int. 3611, 636 (2006), doi: 10.1007/11539117_91
  • [5] Y. Zhao, B. Li, X. Li, W. Liu, S. Ren Lect. Notes Artif. Int. 3584, 131 (2005), doi: 10.1007/11527503_36
  • [6] T. Zabkowski, W. Szczesny, Expert Syst. Appl. 39, 6879 (2012), doi: 10.1016/j.eswa.2012.01.008
  • [7] G. Nie, W. Rowe, L. Zhang, Y. Tian, Y. Shi, Expert Syst. Appl. 38, 15273 (2011), doi: 10.1016/j.eswa.2011.06.028
  • [8] A. Keramati, S. Ardabili, Telecommun. Policy 35, 344 (2011), doi: 10.1016/j.telpol.2011.02.009
  • [9] C. Wei, I. Chiu, Expert Syst. Appl. 23, 103 (2002), doi: 10.1016/S0957-4174(02)00030-1
  • [10] G. Madden, S. Savage, G. Coble-Neal, Eur. Phys. J. B 17, 723 (1999), doi: 10.1016/S0167-6245(99)00015-3
  • [11] J.-H. Ahn, S.-P. Han, Y.-S. Lee, Telecommun. Policy 30, 552 (2006), doi: 10.1016/j.telpol.2006.09.006
  • [12] J. Burez, D. Van den Poel, Expert Syst. Appl. 32, 277 (2007), doi: 10.1016/j.eswa.2005.11.037
  • [13] K. Coussement, D. Van den Poel, Expert Syst. Appl. 34, 313 (2008), doi: 10.1016/j.eswa.2006.09.038
  • [14] D. Seo, C. Ranganathan, Y. Babad, Telecommun. Policy 32, 182 (2010), doi: 10.1016/j.telpol.2007.09.004
  • [15] M. Owczarczuk, Expert Syst. Appl. 37, 4710 (2010), doi: 10.1016/j.eswa.2009.11.083
  • [16] B. Huang, M. Kechadi, B. Buckley, Expert Syst. Appl. 39, 1414 (2008), doi: 10.1016/j.eswa.2011.08.024
  • [17] S. Neslin, S. Gupta, W. Kamakura, J. Lu, C. Mason, J. Mark. Res. 43, 204 (2006), doi: 10.1509/jmkr.43.2.204
  • [18] S. Daskalaki, I. Kopanas, N. Avouris, Appl. Artif. Intellig. 20, 381 (2006), doi: 10.1080/08839510500313653
  • [19] S. Neslin, Cell2Cell: The churn game. Cell2Cell Case Notes, Hanover, NH: Tuck School of Business, Dartmouth College 2002
  • [20] C-F. Tsai, Y-H. Lu, Expert Syst. Appl. 36, 12547 (2009), doi: 10.1016/j.eswa.2009.05.032
  • [21] D. de Waal, J. du Toit, in: Proc. South Africa Telecommunication Networks and Applications, Wild Coast Sun 2008
  • [22] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA 1984
  • [23] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA 1993
  • [24] C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948), doi: 10.1002/j.1538-7305.1948.tb01338.x
  • [25] C. Tsallis, J. Stat. Mech. Theor. Exp. 52, 479 (1988), doi: 10.1007/BF01016429
  • [26] A. Rènyi, in: Proc. 4th Berkeley Symp. on Mathematical Statistics and Probability, University of California Press, Berkeley (CA) 1961, p. 547
  • [27] R Core Team, R Foundation for Statistical Computing, Vienna, Austria 2012
  • [28] C.F.L. Lima, F.M. de Assis, C.P. de Souza, Lect. Notes Artif. Intellig. 7435, 492 (2012), doi: 10.1109/IWMN.2011.6088496
  • [29] Y. Li, X. Fan, G. Li, in: Proc. Int. Conf. on Industrial Informatics, 2006, p. 943, doi: 10.1109/INDIN.2006.275704
  • [30] T. Maszczyk, W. Duch, Artif. Intellig. Soft Comput. 5097, 643 (2008), doi: 10.1007/978-3-540-69731-2_62
  • [31] B. Donkers, P. Franses, P. Verhoef, J. Mark. Res. 40, 492 (2003), doi: 10.1509/jmkr.40.4.492.19395
  • [32] T. Fawcett, Mach. Learn. 31, 1 (2004)
  • [33] D.T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, Hoboken 2014, doi: 10.1002/9781118874059
  • [34] I. Bose, X. Chen, J. Org. Comp. Electron. Com. 19, 133 (2009), doi: 10.1080/10919390902821291
  • [35] K. Gajowniczek, T. Ząbkowski, Quantitat. Meth. Econ. 13, 65 (2012)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n515kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.