PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 819-825
Article title

Modeling the Nonlinear Dynamics of Nanotube Cores Driven by Interlayer Dispersion Force Modulation: New Developments and Future Applications

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Despite several past proposals to employ the inner cores of multiwalled nanotubes as, among others, ultra-high-frequency oscillators, memory devices, and nano-scale sensors, driving into motion a mass initially at rest within the nanotube outer walls has remained a crippling practical obstacle. In addition to the challenge of applying an external driving force upon the entirely embedded shuttle, it has been reported that the dynamics of such motion is "truly nonlinear", that is, it cannot be reduced to that of harmonic or nearly-harmonic oscillators even in the case of vanishing amplitudes. The author has shown that, since friction is nearly negligible, the inner core can be set into motion by breaking the high axial symmetry of the interlayer dispersion forces exerted on it by the outer walls. For instance, by fabricating nanotubes with even just two segments having slightly different dielectric properties, it was concluded that the motion of a partially extruded core under the action of an external electric field could be remarkably stabilized and electrical energy could be both stored into and released from the van der Waals field. Further significant progress was made by identifying a possible mechanism for the time-modulation of the spectral properties of double-walled nanotubes by acting on the free-carrier exciton screening in semiconducting nanotubes. In this paper, new developments are presented in the accurate mathematical modeling of these complex driven systems and additional future applications of telescoping nanotubes as actuators, non-electrochemical energy nanostorage systems, and neutral particle accelerators are illustrated.
Keywords
Contributors
author
  • Jazan University, Faculty of Science, Department of Physics 45142 Gizan, Saudi Arabia
References
  • [1] F. London, J. Phys. Chem. 46, 305 (1942), doi: 10.1021/j150416a009
  • [2] E.J.W. Verwey, J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Ch. 6., Elsevier, New York, 1948
  • [3] J.S. Rowlinson, Cohesion - A Scientific History of Intermolecular Forces, Cambridge University Press, Cambridge 2002
  • [4] F. Pinto, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2012, p. 3713, doi: 10.2514/6.2012-3713
  • [5] J.H. de Boer, Trans. Faraday Soc. 32, 10 (1936), doi: 10.1039/TF9363200010
  • [6] H. Hamaker, Physica 4, 1058 (1937), doi: 10.1016/S0031-8914(37)80203-7
  • [7] H.B.G. Casimir, Proc. Kon. Ned. Akad. Wetenshap 51, 793 (1948)
  • [8] E.M. Lifshitz, Sov. Phys. JETP. 2, 73 (1956)
  • [9] I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961), doi: 10.1080/00018736100101281
  • [10] F. Pinto, Phys. Rev. A 80, 042113 (2009), doi: 10.1103/PhysRevA.80.042113
  • [11] P.J. van Zwol, G. Palasantzas, Acta Phys. Pol. A 117, 379 (2010), doi: 10.12693/APhysPolA.117.379
  • [12] P.W. Milonni, The Quantum Vacuum, Academic Press, San Diego, 1994
  • [13] A.A. Actor, I. Bender, Phys. Rev. D 52, 3581 (1995), doi: 10.1103/PhysRevD.52.3581
  • [14] K. Johnson, Acta Phys. Pol. B 6, 865 (1975)
  • [15] A.S. Larraza, Ch.D. Holmes, R.T. Susbilla, B. Denardo, J. Acoust. Soc. Am. 103, 2267 (1998), doi: 10.1121/1.422744
  • [16] F. Pinto, Phys. Rev. D 73, 104020 (2006), doi: 10.1103/PhysRevD.73.104020
  • [17] F. Pinto, Int. J. Mod. Phys. D. 15, 2235 (2006), doi: 10.1142/S0218271806009674
  • [18] F. London, Trans. Faraday Soc. 33, 8 (1937), doi: 10.1039/tf937330008b
  • [19] E.A. Power, Introductory Quantum Electrodynamics, American Elsevier, New York 1965
  • [20] D.L. Andrews, L.C. Dávila Romero, Eur. J. Phys. 22, 447 (2001), doi: 10.1088/0143-0807/22/4/321
  • [21] W.M.R. Simpson, Stud. Hist. Philos. M.P. 48, 84 (2014), doi: 10.1016/j.shpsb.2014.08.001
  • [22] S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997), doi: 10.1103/PhysRevLett.78.5
  • [23] S.K. Lamoreaux, Phys. Rev. A 82, 024102 (2010), doi: 10.1103/PhysRevA.82.024102
  • [24] U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998), doi: 10.1103/PhysRevLett.81.4549
  • [25] S.K. Lamoreaux, Annu. Rev. Nucl. Part. Sci. 62, 37 (2012), doi: 10.1146/annurev-nucl-102711-095013
  • [26] J. Schwinger, L.L. DeRaad, K.A. Milton, Ann. Phys. (N.Y.) 115, 1 (1978), doi: 10.1016/0003-4916(78)90172-0
  • [27] P.W. Milonni, Contemp. Phys. 33, 313 (1992), doi: 10.1080/00107519208223981
  • [28] D. Kleppner, Phys. Today 43, 9 (1990), doi: 10.1063/1.2810709
  • [29] E. Buks, M.L. Roukes, Phys. Rev. B 63, 033402 (2001), doi: 10.1103/PhysRevB.63.033402
  • [30] R.P. Feynman, Engineering and Science 23, 22 (1960)
  • [31] K. Chang, 'A Tiny Force of Nature is Stronger than Thought', New York Times, February 9th, 2001, p. A17
  • [31a] K. Chang, 'Much Ado About Nothing', The Economist, May 24th-30th, 2008, p. 105
  • [32] K. Autumn, Y.A. Liang, S. Tonia Hsieh, W. Zesch, W. Pang Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681 (2000), doi: 10.1038/35015073
  • [33] A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan, D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha, E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T. Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, PNAS 105, 2307 (2008), doi: 10.1073/pnas.0712117105
  • [34] J.M.R. Bullock, W. Federle, Naturwissenschaften 98, 381 (2011), doi: 10.1007/s00114-011-0781-4
  • [35] K. Autumn, N. Gravish, Phil. Trans. R. Soc. A 366, 1575 (2008), doi: 10.1098/rsta.2007.2173
  • [36] R.L. Forward, Phys. Rev. B 30, 1700 (1984), doi: 10.1103/PhysRevB.30.1700
  • [37] F.M. Serry, D. Walliser, G.J. Maclay, J. Microelectromech. Sys. 4, 193 (1995), doi: 10.1109/84.475546
  • [38] F. Pinto, Am. Sci. 102, 280 (2014), doi: 10.1511/2014.109.280
  • [39] S. Hunklinger, Ph.D. Thesis (unpublished), T.H. München, 1969
  • [40] S. Hunklinger, H. Geisselmann, W. Arnold, Rev. Sci. Instrum. 43, 584 (1972), doi: 10.1063/1.1685696
  • [41] W. Arnold, S. Hunklinger, K. Dransfeld, Phys. Rev. B 19, 6049 (1979), doi: 10.1103/PhysRevB.19.6049
  • [42] F. Pinto, J. Sound. Vib. 291, 1278 (2006), doi: 10.1016/j.jsv.2005.07.027
  • [43] F. Pinto, J. Phys. A 41, 164033 (2008), doi: 10.1088/1751-8113/41/16/164033
  • [44] F. Chen, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Opt. Exp. 15, 4823 (2007), doi: 10.1364/OE.15.004823
  • [45] F. Pinto, Phys. Rev. B 60, 14740 (1999), doi: 10.1103/PhysRevB.60.14740
  • [46] G.J. Maclay, Phys. Rev. A 82, 032106 (2010), doi: 10.1103/PhysRevA.82.032106
  • [47] N. Inui, J. Phys. Soc. Japan 73, 332 (2004), doi: 10.1143/JPSJ.73.332
  • [48] S.Y. Buhmann, L. Knoll, D.-G. Welsch, H.T. Dung, Phys. Rev. A 70, 052117 (2004), doi: 10.1103/PhysRevA.70.052117
  • [49] P.R. Berman, G.W. Ford, P.W. Milonni, Phys. Rev. A 89, 022127 (2014), doi: 10.1103/PhysRevA.89.022127
  • [50] Y.B. Sherkunov, Phys. Rev. A 72, 052703 (2005), doi: 10.1103/PhysRevA.72.052703
  • [51] F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni, Phys. Rev. A 81, 033812 (2010), doi: 10.1103/PhysRevA.81.033812
  • [52] T.G. Philbin, New J. Phys. 12, 123008 (2010), doi: 10.1088/1367-2630/12/12/123008
  • [53] T.G. Philbin, New J. Phys. 13, 063026 (2011), doi: 10.1088/1367-2630/13/6/063026
  • [54] S.A.R. Horsley, Phys. Rev. A 86, 023830 (2012), doi: 10.1103/PhysRevA.86.023830
  • [55] V.E. Mkrtchian, C. Henkel, Ann. Phys. 526, 87 (2014), doi: 10.1002/andp.201300135
  • [56] E.V. Teodorovich, Proc. R. Soc. Lond. A 362, 71 (1978), doi: 10.1098/rspa.1978.0121
  • [57] J. Mahanti, J. Phys. B: Atom. Molec. Phys. 13, 4391 (1980), doi: 10.1088/0022-3700/13/22/013
  • [58] W.L. Schaich, J. Harris, J. Phys. F: Metal Phys. 11, 65 (1981), doi: 10.1088/0305-4608/11/1/011
  • [59] L.S. Levitov, Europhys. Lett. 8, 499 (1989), doi: 10.1209/0295-5075/8/6/002
  • [60] J.B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997), doi: 10.1088/0953-8984/9/47/001
  • [61] M. Kardar, R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999), doi: 10.1103/RevModPhys.71.1233
  • [62] A.A. Kyasov, G.V. Dedkov, Surf. Sci. 463, 11 (2000), doi: 10.1016/S0039-6028(00)00582-3
  • [63] T.G. Philbin, U. Leonhardt, New J. Phys. 11, 033035 (2009), doi: 10.1088/1367-2630/11/3/033035
  • [64] J.B. Pendry, New J. Phys 12, 033028 (2010), doi: 10.1088/1367-2630/12/6/068002
  • [65] U. Leonhardt, New J. Phys. 12, 068001 (2010), doi: 10.1088/1367-2630/12/6/068001
  • [66] J.B. Pendry, New J. Phys 12, 068002 (2010), doi: 10.1088/1367-2630/12/3/033028
  • [67] K.A. Milton, Am. J. Phys. 79, 697 (2011), doi: 10.1119/1.3573976
  • [68] A.I. Volokitin, B.N.J. Persson, New J. Phys 13, 068001 (2011), doi: 10.1088/1367-2630/13/6/068001
  • [69] M.F. Maghrebi, R. Golestanian, M. Kardar, Phys. Rev. A 88, 042509 (2013), doi: 10.1103/PhysRevA.88.042509
  • [70] J.S. Høye, I. Brevik, Eur. Phys. J. D 68, 61 (2014), doi: 10.1140/epjd/e2014-40766-6
  • [71] M.G. Silveirinha, New J. Phys. 16, 063011 (2014), doi: 10.1088/1367-2630/16/6/063011
  • [72] F. Pinto, in: Optomechatronic Technologies 2008, Eds. Y. Otani, Y. Bellouard, J.T. Wen, D. Hodko, Y. Katagiri S.K. Kassegne, J. Kofman, S. Kaneko, C.A. Perez, D. Coquin, O. Kaynak, Y. Cho, T. Fukuda, J. Yi, F. Janabi-Sharifi, SPIE, San Diego, 2008, p. 726616, doi: 10.1117/12.816474
  • [73] F. Pinto, in: Space Technology and Applications International Forum (STAIF-2008), AIP Conference Proceedings 969, Ed. M.S. El-Genk, American Institute of Physics, Melville, NY 2008, p. 959, doi: 10.1063/1.2845064
  • [74] F. Pinto, US Patent Nos. 8,299,761; 8,174,706; 8,149,422; 6,920,032; 6,842,326; 6,665,167; 6,661,576; 6,650,527; 6,593,566; 6,477,028
  • [75] J. Cumings, A. Zettl, Science 289, 602 (2000), doi: 10.1126/science.289.5479.602
  • [76] A. Kis, A. Zettl, Phil. Trans. R. Soc. A 366, 1591 (2008), doi: 10.1098/rsta.2007.2174
  • [77] W. Guo, Y. Guo, H. Gao, Q. Zheng, W. Zhong, Phys. Rev. Lett. 91, 125501 (2003), doi: 10.1103/PhysRevLett.91.125501
  • [78] D. Baowan, J.M. Hill, Z. angew. Math. Phys. 58, 857 (2007), doi: 10.1007/s00033-006-6098-z
  • [79] V. Zavalniuk, S. Marchenko, Low Temp. Phys. 37, 337 (2011), doi: 10.1063/1.3592692
  • [80] R.E. Mickens, Truly Nonlinear Oscillations, World Scientific, New Jersey, 2010
  • [81] L. Forro, Science 289, 560 (2000), doi: 10.1126/science.289.5479.560
  • [82] A.W. Rodriguez, F. Capasso, S.G. Johnson, Nature Photonics 5, 211 (2011), doi: 10.1038/nphoton.2011.39
  • [83] E. Buks, M.L. Roukes, Europhys. Lett. 54, 220 (2001), doi: 10.1209/epl/i2001-00298-x
  • [84] X.L. Jia, J. Yang, S. Kitipornchai, Acta Mech. 218, 161 (2010), doi: 10.1007/s00707-010-0412-8
  • [85] F. Pinto, in: Nanotube Superfiber Materials, Ch. 27, Eds. M. Schulz, V.N. Shanov, Y. Zhangzhang, Elsevier, New York, 2013, doi: 10.2514/6.2012-3713
  • [86] J.W. Kang, J.H. Lee, K.-S. Kim, Y.G. Choi, Model. Simul. Mater. Sci. Eng. 17, 025011 (2009), doi: 10.1088/0965-0393/17/2/025011
  • [87] J.W. Kang, Q. Jiang, Nanotechnology 18, 095705 (2007), doi: 10.1088/0957-4484/18/9/095705
  • [88] C.L. Yang, B. Hou, I.L. Li, Z.M. Li, Z.K. Tang, J.N. Wang, H.J. Liu, W.K. Ge, Phys. Rev. B 71, 233404 (2005), doi: 10.1103/PhysRevB.71.233404
  • [89] D. Rossouw, M. Bugnet, G.A. Botton, Phys. Rev. B 87, 125403 (2013), doi: 10.1103/PhysRevB.87.125403
  • [90] F. Pinto, J. Appl. Phys. 114, 024310 (2013), doi: 10.1063/1.4812495
  • [91] S. Akita, Y. Nakayama, Jpn. J. Appl. Phys. 42, 4830 (2003), doi: 10.1143/JJAP.42.4830
  • [92] B.H. Hong, J.P. Small, M.S. Purewal, A. Mullokandov, M.Y. Sfeir, F. Wang, J.Y. Lee, T.F. Heinz, L.E. Brus, P. Kim, K.S. Kim, PNAS 102, 14155 (2005), doi: 10.1073/pnas.0505219102
  • [93] A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl, Phys. Rev. Lett. 97, 025501 (2006), doi: 10.1103/PhysRevLett.97.025501
  • [94] H. Krupp, Advan. Colloid Interface Sci. 1, 111 (1967), doi: 10.1016/0001-8686(67)80004-6
  • [95] Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002), doi: 10.1103/PhysRevLett.88.045503
  • [96] E.V. Blagov, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. B 75, 235413 (2007), doi: 10.1103/PhysRevB.75.235413
  • [97] V.A. Parsegian, Van der Waals Forces, Cambridge Univ. Press, Cambridge, 2006
  • [98] A. Achoyan, S. Petrosyan, H. Ruda, A. Shik, Phys. Rev. B 77, 085303 (2008), doi: 10.1103/PhysRevB.77.085303
  • [99] B. Adhikari, Phys. Stat. Sol. A 211, 277 (2014), doi: 10.1002/pssa.201330082
  • [100] A. Neild, T.W. Ng, Q. Zheng, EPL 87, 16002 (2009), doi: 10.1209/0295-5075/87/16002
  • [101] I. Kovacic, J. Sound. Vib. 330, 4313 (2011), doi: 10.1016/j.jsv.2011.04.001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n4105kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.