Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 806-809

Article title

Intermolecular Magnetic Spin-Spin Interaction in Asphaltene Suspensions at 1.53 mT

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, Overhauser effect (OE) type of dynamic nuclear polarization (DNP) experiments were performed to study suspensions of MC800 asphaltene in bromopentafluorobenzene, chloropentafluorobenzene and hexafluorobenzene aromatic solvents. The experiments were performed at a low field of 1.53 mT in a double-resonance nuclear magnetic resonance (NMR) spectrometer. In this technique the nuclei of diffusing solvent molecules and the unpaired electron existing on the asphaltene micelles interact magnetically. The DNP parameters were determined. Additionally, the interactions between ¹⁹F nuclei of the solvent and the electrons delocalized on the asphaltene are interpreted. The highest enhancement factor value (5.90) was obtained for the hexafluorobenzene solvent medium, because between these, hexafluorobenzene has the highest fluorine atom number. The solvent molecules attach to the colloidal asphaltene particles for a very short time forming complexes and making scalar interaction. Morphologies of asphaltene surfaces depending on the solvent effects were observed by using scanning electron microscopy (SEM).

Keywords

Contributors

author
  • Physics Department, Faculty of Arts and Sciences, Uludag University 16059 Gorukle, Bursa, Turkey
author
  • Physics Department, Faculty of Arts and Sciences, Uludag University 16059 Gorukle, Bursa, Turkey
author
  • Physics Department, Faculty of Arts and Sciences, Uludag University 16059 Gorukle, Bursa, Turkey

References

  • [1] P. Luo, X. Wang, Y. Gu, Fluid Phase Equilibr. 291, 103 (2010), doi: 10.1016/j.fluid.2009.12.010
  • [2] A.W. Overhauser, Phys. Rev. 92, 411 (1953), doi: 10.1103/PhysRev.92.411
  • [3] H.S. Gutowsky, B.R. Ray, R.L. Rutledge, R.R. Unterberger, J. Chem. Phys. 28, 744 (1958), doi: 10.1063/1.1744250
  • [4] E.H. Poindexter, J. Colloid. Interface Sci. 38, 412 (1972), doi: 10.1016/0021-9797(72)90256-1
  • [5] H.E. Kirimli, H. Ovalioglu, J. Dispersion Sci. Technol. 35, 255 (2014), doi: 10.1080/01932691.2013.767208
  • [6] B.D. Armstrong, P. Soto, J.E. Shea, S. Han, J. Magn. Reson. 200, 137 (2009), doi: 10.1016/j.jmr.2009.05.013
  • [7] J. Potenza, Adv. Mol. Relax. Proc. 4, 229 (1972), doi: 10.1016/0001-8716(72)80016-6
  • [8] W. Müller-Warmuth, E. Oztekin, R. Vilhjalmsson, A. Yalçıner, Z. Naturforsch A25, 1688 (1970)
  • [9] A. Peksoz, M.A. Cimenoglu, A. Yalçıner, J. Dispersion Sci. Technol. 29, 40 (2008), doi: 10.1080/01932690701686809
  • [10] H.E. Kirimli, A. Peksoz, Mol. Phys. 109, 337 (2011), doi: 10.1080/00268976.2010.520751
  • [11] K. Baginska, I. Gawel, Fuel Process. Technol. 85, 1453 (2004), doi: 10.1016/j.fuproc.2003.10.002
  • [12] Z. Gülsün, A. Yalçıner, Commun. Fac. Sci. Univ. Ankara, 29, 1 (1980)
  • [13] A. Yalçıner, M.A. Çimenoğlu, C. Akay, H. Ovalıoğlu, ARI 51, 141 (1998)
  • [14] D. Aydoğdu, M.A. Çimenoğlu, A. Yalçıner, J. Dispersion Sci. Technol. 27, 955 (2006), doi: 10.1080/01932690600766868
  • [15] K.L. Gawrys, P.M. Spiecker, P.K. Kilpatrick, Pet. Sci. Technol. 21, 461 (2003), doi: 10.1081/LFT-120018533
  • [16] F.T. Trejo, J. Ancheyta, M.S. Rana, Energy & Fuels 23, 429 (2009), doi: 10.1021/ef8005405

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n4101kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.