Title variants
Languages of publication
Abstracts
Metamaterials are a new class of composite materials with unusual properties that allow controlling of electromagnetic waves by properly engineering the response functions, which are not observed in constituent materials. However, since absorption of metamaterials is mainly based on electromagnetic resonances, the operating bandwidth is relatively narrow. Utilization of more than a single metallic structure with different geometrical parameters in each unit cell is a common way of accomplishing multiple band and/or broadband absorption. There are two usual approaches for this purpose: (a) multilayer unit cell design where metallic structures on dielectric substrate are stacked one on top of the other; (b) side by side unit cell design where metallic structures are distributed on a dielectric substrate. However, to the best of our knowledge, these two different approaches are not comparatively investigated. In this study, we propose metamaterial-based perfect absorbers with two different unit cell designs and simulate transmittances, reflectances and absorbances for each design by a commercial electromagnetic solver, CST Microwave Studio. It is found that each design has its own advantages in terms of device thickness, absorption bandwidth and angular dependence, which might be severely important for particular purposes.
Discipline
- 41.20.Jb: Electromagnetic wave propagation; radiowave propagation(for light propagation, see 42.25.Bs; for electromagnetic waves in plasma, see 52.35.Hr; for atmospheric, ionospheric, and magnetospheric propagation, see 92.60.Ta, 94.20.Bb, and 94.30.Tz, respectively; see also 94.05.Pt Wave/wave, wave/particle interactions, in space plasma physics)
- 81.05.Xj: Metamaterials for chiral, bianisotropic and other complex media(see also 42.70.-a Optical materials; see also 78.67.Pt, Multilayers; superlattices; photonic structures; metamaterials)
Journal
Year
Volume
Issue
Pages
792-796
Physical description
Dates
published
2016-04
Contributors
author
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey
author
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey
References
- [1] V.G. Veselago, Soviet Physics Uspekhi 10, 509 (1968), doi: 10.1070/pu1968v010n04abeh003699
- [2] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000), doi: 10.1103/PhysRevLett.84.4184
- [3] K.B. Alici, E. Ozbay, Phot. Nano. Fund. Appl. 6, 102 (2008), doi: 10.1016/j.photonics.2008.01.001
- [4] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005), doi: 10.1103/PhysRevLett.95.203901
- [5] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010), doi: 10.1021/nl9041033
- [6] W.L. Chan, H.T. Chen, A.J. Taylor, I. Brenner, M.J. Cich, D.M. Mittleman, Appl. Phys. Lett. 94, 213511 (2009), doi: 10.1063/1.3147221
- [7] P. Singh, K.A. Korolev, M.N. Afsar, S. Sonkusale, Appl. Phys. Lett. 99, 264101 (2011), doi: 10.1063/1.3672100
- [8] H. Oraizi, A. Abdolali, N. Vasegh, Prog. Electromagn. Res. 101, 323 (2010), doi: 10.2528/PIER10010603
- [9] D. Schurig, J.J. Mock, D.R. Smith, Appl. Phys. Lett. 88, 041109 (2006), doi: 10.1063/1.2166681
- [10] K.B. Alici, A.B. Turhan, C.M. Soukoulis, E. Ozbay, Opt. Express 19, 14260 (2011), doi: 10.1364/oe.19.014260
- [11] T.H. Nguyen, S.T. Bui, T.T. Nguyen, T.T. Nguyen, Y. Lee, M.A. Nguyen, D.L. Vu, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 025013 (2014), doi: 10.1088/2043-6262/5/2/025013
- [12] S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, Appl. Phys. A 118, 207 (2015), doi: 10.1007/s00339-014-8908-z
- [13] F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Appl. Phys. Lett. 100, 103506 (2012), doi: 10.1063/1.3692178
- [14] H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D 43, 225102 (2010), doi: 10.1088/0022-3727/43/22/225102
- [15] Y.Z. Cheng, Y. Wang, Y. Nie, R.Z. Gong, X. Xiong, X. Wang, J. Appl. Phys. 111, 044902 (2012), doi: 10.1063/1.3684553
- [16] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008), doi: 10.1103/PhysRevLett.100.207402
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n4097kz