Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 792-796
Article title

Consequences of Unit Cell Design in Metamaterial Perfect Absorbers

Title variants
Languages of publication
Metamaterials are a new class of composite materials with unusual properties that allow controlling of electromagnetic waves by properly engineering the response functions, which are not observed in constituent materials. However, since absorption of metamaterials is mainly based on electromagnetic resonances, the operating bandwidth is relatively narrow. Utilization of more than a single metallic structure with different geometrical parameters in each unit cell is a common way of accomplishing multiple band and/or broadband absorption. There are two usual approaches for this purpose: (a) multilayer unit cell design where metallic structures on dielectric substrate are stacked one on top of the other; (b) side by side unit cell design where metallic structures are distributed on a dielectric substrate. However, to the best of our knowledge, these two different approaches are not comparatively investigated. In this study, we propose metamaterial-based perfect absorbers with two different unit cell designs and simulate transmittances, reflectances and absorbances for each design by a commercial electromagnetic solver, CST Microwave Studio. It is found that each design has its own advantages in terms of device thickness, absorption bandwidth and angular dependence, which might be severely important for particular purposes.
  • Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey
  • Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara, Turkey
  • [1] V.G. Veselago, Soviet Physics Uspekhi 10, 509 (1968), doi: 10.1070/pu1968v010n04abeh003699
  • [2] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000), doi: 10.1103/PhysRevLett.84.4184
  • [3] K.B. Alici, E. Ozbay, Phot. Nano. Fund. Appl. 6, 102 (2008), doi: 10.1016/j.photonics.2008.01.001
  • [4] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005), doi: 10.1103/PhysRevLett.95.203901
  • [5] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010), doi: 10.1021/nl9041033
  • [6] W.L. Chan, H.T. Chen, A.J. Taylor, I. Brenner, M.J. Cich, D.M. Mittleman, Appl. Phys. Lett. 94, 213511 (2009), doi: 10.1063/1.3147221
  • [7] P. Singh, K.A. Korolev, M.N. Afsar, S. Sonkusale, Appl. Phys. Lett. 99, 264101 (2011), doi: 10.1063/1.3672100
  • [8] H. Oraizi, A. Abdolali, N. Vasegh, Prog. Electromagn. Res. 101, 323 (2010), doi: 10.2528/PIER10010603
  • [9] D. Schurig, J.J. Mock, D.R. Smith, Appl. Phys. Lett. 88, 041109 (2006), doi: 10.1063/1.2166681
  • [10] K.B. Alici, A.B. Turhan, C.M. Soukoulis, E. Ozbay, Opt. Express 19, 14260 (2011), doi: 10.1364/oe.19.014260
  • [11] T.H. Nguyen, S.T. Bui, T.T. Nguyen, T.T. Nguyen, Y. Lee, M.A. Nguyen, D.L. Vu, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 025013 (2014), doi: 10.1088/2043-6262/5/2/025013
  • [12] S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, Appl. Phys. A 118, 207 (2015), doi: 10.1007/s00339-014-8908-z
  • [13] F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Appl. Phys. Lett. 100, 103506 (2012), doi: 10.1063/1.3692178
  • [14] H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D 43, 225102 (2010), doi: 10.1088/0022-3727/43/22/225102
  • [15] Y.Z. Cheng, Y. Wang, Y. Nie, R.Z. Gong, X. Xiong, X. Wang, J. Appl. Phys. 111, 044902 (2012), doi: 10.1063/1.3684553
  • [16] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008), doi: 10.1103/PhysRevLett.100.207402
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.