PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 788-791
Article title

Effect of Copper Addition on Pitting Corrosion of MA-Al

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper is intended to highlight the effect of copper addition on the pitting corrosion resistance of aluminium-base powder metallurgy parts. Results obtained on these mechanically alloyed (MA) specimens are compared with parts of MA-Al without added copper, as well as with commercial aluminium alloys. Immersion tests from 2 to 96 hours in 3.5% NaCl solutions, and potentiostatic techniques, were used to study the pitting corrosion. It was concluded that copper addition, in a similar way that in commercial aluminium alloys, produces a negative effect on the pitting corrosion resistance, because of the formation of Al₂Cu. These precipitates produce galvanic cells that favour the specimen pit. Therefore, increasing the copper content of MA-Al, although improving their ductility, worsens the pitting corrosion resistance of these alloys.
Keywords
EN
Contributors
author
  • Escuela Técnica Superior de Ingeniería, University of Huelva, Carretera de Palos s/n, 21819, La Rábida-Huelva, Spain
author
  • Escuela Técnica Superior de Ingeniería, University of Huelva, Carretera de Palos s/n, 21819, La Rábida-Huelva, Spain
author
  • Escuela Técnica Superior de Ingeniería, University of Seville, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
  • Escuela Técnica Superior de Ingeniería, University of Seville, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
author
  • Escuela Técnica Superior de Ingeniería, University of Seville, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
References
  • [1] A. Jiménez-Morales, E.M. Ruiz-Navas, J.B. Fogagnolo, J.M. Torralba, Bol. Soc. Esp. Ceram. V 43, 196 (2004)
  • [2] J. Cintas, J.M. Montes, F.G. Cuevas, E.J. Herrera, Scrip. Mater. 53, 1165 (2005), doi: 10.1016/j.scriptamat.2005.07.019
  • [3] A. Włodarczyk-Fligier, M. Adamiak, L.A. Dobrzański, Arch. Mat. Sci. Eng. 42, 29 (2010) http://archivesmse.org/vol42_1/4214.pdf
  • [4] A.J. Trowsdale, B. Noble, S.J. Harris, I.S.R. Gibbins, G.E. Thompson, G.C. Wood, Corr. Sci. 38, 177 (1996), doi: 10.1016/0010-938X(96)00098-4
  • [5] A. Urena, E. Otero, M.V. Utrilla, P. Rodrigo, Bol. Soc. Esp. Ceram. V. 43, 233 (2004)
  • [6] B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Corr. Sci. 50, 1841 (2008), doi: 10.1016/j.corsci.2008.03.006
  • [7] W.R. Osório, C.M. Freire, R. Caram, A. Garcia, Electrochim. Acta 77, 189 (2012), doi: 10.1016/j.electacta.2012.05.106
  • [8] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez, Corr. Sci. 73, 342 (2013), doi: 10.1016/j.corsci.2013.04.023
  • [9] ASTM, Standard practice for laboratory immersion corrosion testing of metals, G31-72, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, (2004)
  • [10] ASTM, Standard for preparing, cleaning and evaluating corrosion test specimens, G1-03, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, (2003)
  • [11] R.Z. Nakazato, E.N. Codaro, A.L. Horovistiz, L.R.O. Hein, Prakt. Metall. 38, 74 (2001)
  • [12] Kyung-Hwan Na, Su-Il Pyun, Corr. Sci. 50, 248 (2008), doi: 10.1016/j.corsci.2007.05.028
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n4096kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.