Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 578-583
Article title

Sensitizing Effects of Ti Alloying Contents on Damage Behavior of Austenitic Stainless Steel Exposed to Ultrasonic Vibratory Cavitation

Title variants
Languages of publication
The cavitation damage characteristics of austenitic stainless steel with different concentrations of Ti were investigated. The microstructure of the alloys was observed with optical microscope to identify its correlation with cavitation resistance. Hardness of the alloys was measured to examine its contribution to cavitation damage. It was found that the microstructure played a more significant role in cavitation damage behavior of austenitic stainless steel with Ti than the hardness. The findings in this study revealed that Ti addition in austenitic stainless steel may present either a beneficial or detrimental effect on cavitation damage behavior, depending on the microstructural characteristics. In particular, Ti content of 1.0% represented the most deteriorated cavitation characteristics due to the formation of relatively coarse precipitates. Therefore, control of Ti concentration is essential for marine application of austenitic stainless steel.
Physical description
  • Korea Testing & Research Institute, Key Industry Division, Jongga-ro 15, Ulsan, 44412, Korea
  • Mokpo National Maritime University, Division of Marine Engineering, Haeyangdaehak-Ro 91 Mokpo-si, Jeollanam-do, 530-729, Korea
  • [1] R.J.K. Wood, S.A. Fry, J. Fluids Eng. 111, 271 (1989), doi: 10.1115/1.3243641
  • [2] G. Bregliozzi, A.D. Schino, S.I.U. Ahmed, J.M. Kenny, H. Haefke, Wear 258, 503 (2005), doi: 10.1016/j.wear.2004.03.024
  • [3] A. Karabenciov, A.D. Jurchela, I. Bordeasu, M. Popoviciu, N. Birau, A. Lustyan, in: 25th IAHR Symp. on Hydraulic Machinery and Systems, Ed. R.S. Resiga, IOP Publishing, Timisoara 2010, p. 1755, doi: 10.1088/1755-1315/12/1/012036
  • [4] S.C. Chang, W.H. Weng, H.C. Chen, S.J. Lin, P.C.K. Chung, Wear 181, 511 (1995), doi: 10.1016/0043-1648(95)90165-5
  • [5] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, R. Arraval, Acta Mater. 55, 2239 (2007), doi: 10.1016/j.actamat.2006.11.021
  • [6] J. Brnic, G. Turkalj, M. Canadija, D. Lanc, J. Construct. Steel Res. 67, 1948 (2011), doi: 10.1016/j.jcsr.2011.06.011
  • [7] S. Xu, X.Q. Wu, E.H. Han, W. Ke, Y. Katada, Mater. Sci. Eng. A 490, 16 (2008), doi: 10.1016/j.msea.2007.12.043
  • [8] S. Hattori, R. Ishikura, Q. Zhang, Wear 257, 1022 (2004), doi: 10.1016/j.msea.2007.12.043
  • [9] X. Yong, D. Li, H. Shen, Master. Chem. Phys. 139, 290 (2013), doi: 10.1016/j.matchemphys.2013.01.038
  • [10] M.C. Park, K.N. Kim, G.S. Shin, S.J. Kim, Wear 274, 28 (2012), doi: 10.1016/j.wear.2011.08.011
  • [11] M.G.D.V. Cuppari, F. Wischnowski, D.K. Tanaka, A. Sinatora, Wear 225, 517 (1999), doi: 10.1016/S0043-1648(98)00377-9
  • [12] M.G.D.V. Cuppari, R.M. Souza, A. Sinatora, Wear 258, 596 (2005), doi: 10.1016/j.wear.2004.09.019
  • [13] A.A. Kasem, A.E.E. Deen, K.M. Emara, S.M. Ahmed, J. Tribol. 131, 031605 (2009), doi: 10.1115/1.3075863
  • [14] W. Liu, Y.G. Zheng, C.S. Liu, Z.M. Yao, W. Ke, Wear 254, 713 (2003), doi: 10.1016/S0043-1648(03)00128-5
  • [15] S.A. Karrab, M.A. Moheim, M.S. Aboraia, S.M. Ahmed, J. Tribol. 134, 011602 (2012), doi: 10.1115/1.4005646
  • [16] K.Y. Chiu, F.T. Cheng, H.C. Man, Ultrasonics 43, 713 (2005), doi: 10.1016/j.ultras.2005.03.009
  • [17] R.J.K. Wood, S.P. Hutton, Wear 140, 387 (1990), doi: 10.1016/0043-1648(90)90098-U
  • [18] C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145 (2000), doi: 10.1016/S0921-5093(00)00899-6
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.