PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 556-558
Article title

Study of Two-Dimensional Photonic Crystal Microcavities as a Function of Refractive Index

Content
Title variants
Languages of publication
EN
Abstracts
EN
Quality factor of two-dimensional photonic crystals microcavity fabricated by SiO₂/ZrO₂ or SiO₂/TiO₂ in which the refractive index varied in the range of 1.51 to 1.58 has been investigated in the present paper. The structure studied consists of circular rods of radius r embedded in air slab, while a is the constant of triangular lattice. Finite difference time domain method with perfectly matched layers was used to calculate the transmission spectrum by FullWAVE software. The results of simulation clearly demonstrate the existences of resonance wavelength of which the position and the highest Q (Q ≈ 4×10⁵) value are strongly affected by refractive index. We demonstrate that the calculated Q factor for the designed cavity increases by a factor of three relative for a cavity without increasing the refractive index.
Keywords
Contributors
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Department of Electronics, Mohamed Boudiaf University of M'sila, B.P. 166, Route Ichebilia, M'sila, 28000 Algeria
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Department of Electronics, Mohamed Boudiaf University of M'sila, B.P. 166, Route Ichebilia, M'sila, 28000 Algeria
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Department of Electronics, Mohamed Boudiaf University of M'sila, B.P. 166, Route Ichebilia, M'sila, 28000 Algeria
References
  • [1] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, Princeton Univ. Press, Princeton 1995
  • [2] A. Benmerkhi, M. Bouchemat, T. Bouchemat, N. Paraire, J. Mater. Sci. Eng. 15, 012094 (2012), doi: 10.1088/1757-899X/15/1/012094
  • [3] E. Yablonovitch, J. Phys. Rev. Lett. 58, 2059 (1987, doi: 10.1103/PhysRevLett.58.2059
  • [4] S. John, Phys. Rev. Lett. 58, 2486 (1987), doi: 10.1103/PhysRevLett.58.2486
  • [5] A. Harhouz, A. Hocini, J. Electromagn. Wave Appl. 29, 659 (2015), doi: 10.1080/09205071.2015.1012597
  • [6] J.M. Lourtioz, H. Benisty, V. Berger, J.M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals, Springer, Berlin 2005
  • [7] S.Y. Lin, E. Chow, S.G. Johnson, J.D. Joanopolous, J. Opt. Lett. 26, 1903 (2001), doi: 10.1364/OL.26.001903
  • [8] E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993), doi: 10.1364/JOSAB.10.000283
  • [9] P.R. Villeneuve, D.S. Abrams, S. Fan, J.D. Joannopoulos, J. Opt. Lett. 21, 2017 (1996), doi: 10.1364/OL.21.002017
  • [10] S.Y. Lin, J.G. Fleming, M.M. Sigalas, R. Biswas, K.M. Ho, J. Phys. Rev. 59, R15579 (1999), doi: 10.1103/PhysRevB.59.R15579
  • [11] D.R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S.L. McCall, P.M. Platzman, J. Opt. Soc. Am. 10, 314 (1993), doi: 10.1364/JOSAB.10.000314
  • [12] A. Kahlouche, A. Hocini, D. Khedrouche, J. Comput. Electron. 6, 0559 (2014), doi: 10.1007/s10825-014-0559-y
  • [13] M. Okano, S. Noda, Phys. Rev. B 70, 125105 (2004), doi: 10.1103/PhysRevB.70.125105
  • [14] C.J. Brinker, G.W. Scherer, Sol-Gel Science, Academic Press, Boston 1990
  • [15] O. Bouleghlimat, A. Hocini, Phys. Scr. 89, 105502 (2014), doi: 10.1088/0031-8949/89/10/105502
  • [16] A. Hocini, M. Bouras, H. Amata, J. Opt. Mater. 35, 1669 (2013), doi: 10.1016/j.optmat.2013.04.026
  • [17] A. Hocini, A. Bouchelaghem, D. Saigaa, M. Bouras, T. Boumaza, M. Bouchemat, J. Comput. Electron. 12, 50 (2013), doi: 10.1007/s10825-013-0435-1
  • [18] RSoftDesign Group, FullWAVE v3.0.1., Inc. 200 Executive Blvd., Ossining, NY 10562
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n4035kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.