Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 535-537

Article title

Computational Modeling of the Liquid Structure of Grossular Ca₃Al₂Si₃O₁₂ Glass-Ceramics

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we present an atomistic model to simulate the structural and some thermodynamic properties of biomaterials as a test case of grossular glass-ceramics. The potential model used in our simulations included short range Born-Mayer type forces and long-range Coulomb interactions. We modelled the atomistic structure of grossular using the different structural optimization methods in conjunction with molecular dynamics simulations. The calculated values of the lattice constant, bulk modulus, elastic constants and cohesive energy are in reasonable agreement with experimental measurements and previous data. The melting point of grossular produced from a volume of the heating process is in a good agreement with literature. Comparison of the predictions of partial pair distribution functions and available experimental data shows that this model has simulated the liquid structure of grossular reasonably well.

Keywords

EN

Year

Volume

129

Issue

4

Pages

535-537

Physical description

Dates

published
2016-04

Contributors

  • Trakya University, Faculty of Science, Department of Physics, Balkan Campus 22030 Edirne, Turkey
author
  • Trakya University, Faculty of Science, Department of Physics, Balkan Campus 22030 Edirne, Turkey

References

  • [1] H. Maeda, J. Ceram. Soc. Jpn. 122, 858 (2014), doi: 10.2109/jcersj2.122.858
  • [2] P. Siriphannon, S. Hayashi, A. Yasumori, K. Okada, J. Mater. Res. 14, 529 (1999), doi: 10.1557/JMR.1999.0076
  • [3] S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, C. Ning, Biomaterials 29, 2588 (2008), doi: 10.1016/j.biomaterials.2008.03.013
  • [4] S. Geller, Z. Kristallogr. 125, 1 (1967), doi: 10.1524/zkri.1967.125.125.1
  • [5] C.A. Geiger, T. Armbruster, Am. Mineral. 82, 740 (1997), doi: 10.2138/am-1997-7-811
  • [6] M.L. Rivers, I.S.E. Carmichael, J. Geophys. Res. 92, 9247 (1987), doi: 10.1029/JB092iB09p09247
  • [7] M.H. Manghnani, H. Sato, C.S. Rai, J. Geophys. Res. 91, 9333 (1986), doi: 10.1029/JB091iB09p09333
  • [8] S. Plimpton, J. Comp. Phys. 117, 1 (1995), doi: 10.1006/jcph.1995.1039
  • [9] J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003), doi: 10.1080/0892702031000104887
  • [10] V.L. Vinograd, M.H.F. Sluiter, Am. Mineral. 91, 1815 (2006), doi: 10.2138/am.2006.2140
  • [11] P.P. Ewald, Ann. Phys. 369, 253 (1921), doi: 10.1002/andp.19213690304
  • [12] D.A. Pawlak, K. Wozniak, Z. Frukacz, T.L. Barr, D. Fiorentino, S. Seal, J. Phys. Chem. B 103, 1454 (1999), doi: 10.1021/jp9838801
  • [13] S. Blonski, S.H. Garofalini, J. Am. Ceram. Soc. 80, 1997 (1997), doi: 10.1111/j.1151-2916.1997.tb03083.x
  • [14] U. Becker, K. Pollor, Phys. Chem. Minerals 29, 52 (2002), doi: 10.1007/s002690100211
  • [15] P.M. Halleck, Ph.D. Thesis, Chicago University, 1973
  • [16] J.D. Bass, J. Geophys. Res. 94, 7621 (1989), doi: 10.1029/JB094iB06p07621
  • [17] V. Haigis, M. Salanne, S. Simon, M. Wilke, S. Jahn, Chem. Geol. 346, 14 (2013), doi: 10.1016/j.chemgeo.2012.08.021

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n4029kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.