Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 524-527
Article title

Characterization of Sm and Nd Co-Doped Ceria-Based Electrolyte Materials

Title variants
Languages of publication
Ceria doped with trivalent cations, such as rare earth elements, is considered to be one of the most promising electrolyte materials for intermediate-temperature solid oxide fuel cells, which are an alternative to the commercially used ytrium-stabilized zirconia (YSZ). The aim of this work research is to synthesize Sm and Nd co-doped ceria materials using the Pechini method as solid electrolyte for intermediate temperature solid oxide fuel cell. Ce_{0.75}Sm_{0.20}Nd_{0.05}O_{1.875}, Ce_{0.65}Sm_{0.20}Nd_{0.15}O_{1.825}, and Ce_{0.60}Sm_{0.20}Nd_{0.20}O_{1.80} have been chosen as target of this study. Microstructural and physical properties of the samples were characterized with X-ray diffraction, scanning electron microscopy, thermogravimetric analysis methods. The results of the thermogravimetry/differential thermal analysis and X-ray diffraction indicated that a single-phase fluorite structure formed at the relatively low calcination temperature of 600°C for 3 h. The two-probe ac impedance spectroscopy was used to study the total ionic conductivity of doped and co-doped ceria ceramics at 800°C. The Ce_{0.60}Sm_{0.20}Nd_{0.20}O_{1.80} sample showed maximum ionic conductivity.
Physical description
  • [1] H. Inaba, H. Tagawa, Solid State Ionics 83, 1 (1996), doi: 10.1016/0167-2738(95)00229-4
  • [2] J.A. Kilner, Solid State Ionics 129, 13 (2000), doi: 10.1016/S0167-2738(99)00313-6
  • [3] X. Guan, H. Zhou, Y. Wang, J. Zhang, J. Alloys Comp. 464, 310 (2008), doi: 10.1016/j.jallcom.2007.09.116
  • [4] G. Kim, N. Lee, K. Beum Kim, B.K. Kim, H. Chang, S.J. Song, J.Y. Park, Int. J. Hydrogen. Energy 38, 157 (2013), doi: 10.1016/j.ijhydene.2012.11.044
  • [5] V. Prashanth Kumar, Y.S. Reddy, P. Kistaiah, G. Prasad, C. Vishnuvardhan Reddy, Mater. Chem. Phys. 112, 711 (2008), doi: 10.1016/j.matchemphys.2008.06.030
  • [6] B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 217 (2013), doi: 10.1016/j.cap.2012.07.014
  • [7] F.Y. Wang, S. Chen, S. Cheng, Electrochem. Commun. 6, 743 (2004), doi: 10.1016/j.elecom.2004.05.017
  • [8] R. Torrens, N.M. Sammes, G. Tompsett, J. Electroceram. 13, 683 (2004), doi: 10.1007/s10832-004-5176-x
  • [9] C. Ramesh, C.V. Reddy, Acta Phys. Pol. A 115, 909 (2009), doi: 10.12693/APhysPolA.115.909
  • [10] S. Dikmen, H. Aslanbay, E. Dikmen, O. Sahin, J. Power Sources 195, 2488 (2010), doi: 10.1016/j.jpowsour.2009.11.077
  • [11] B. Li, Y. Liu, X. Wei, W. Pan, J. Power Sources 195, 969 (2010), doi: 10.1016/j.jpowsour.2009.09.001
  • [12] H.C. Yao, Y.X. Zhang, J.J. Liu, Y.L. Li, J.S. Wang, Z.J. Li, Mater. Res. Bull. 46, 75 (2011), doi: 10.1016/j.materresbull.2010.09.035
  • [13] K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, K.N. Ganesha, Solid State Sci. 26, 89 (2013), doi: 10.1016/j.solidstatesciences.2013.09.015
  • [14] Y. Tao, J. Shao, J. Wang, W. Wang, J. Alloys Comp. 484, 729 (2009), doi: 10.1016/j.jallcom.2009.05.027
  • [15] A. Arabacı, V. Sarıboğa, M.F. Öksüzömer, Metall. Mater. Trans. A 45, 5259 (2014), doi: 10.1007/s11661-014-2456-1
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.