PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 478-481
Article title

High Aspect Ratio Graphene Nanosheets Cause a Very Low Percolation Threshold for Polymer Nanocomposites

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Liquid exfoliated, high aspect ratio (1272) graphene nanosheets (GNS) are dispersed in thermoplastic polyurethane (TPU) to prepare range of nanocomposites. A three fold increase in direct current conductivity is recorded at 0.0055 volume fraction (V_{f}) of GNS-TPU composites as compared to pristine TPU. It is suggested that the percolation threshold for conducting network achieved at low filler loadings is due to the high aspect ratio and homogeneous dispersion of GNS within the polymer. The experimental results are interpreted using interparticle distance model and modified power law. The two models predict threshold filler loading in 0.015-0.001 range volume fraction GNS based on the average values of mean length and no. of layers per nanosheet. The experimental results favor modified power law as it relies on aspect ratio of fillers. A slight deviation in our study from modified power law may be due to aggregation in as prepared GNS.
Keywords
EN
Publisher

Year
Volume
129
Issue
4
Pages
478-481
Physical description
Dates
published
2016-04
Contributors
author
  • School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12 Campus, Islamabad, 44000, Pakistan
author
  • School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12 Campus, Islamabad, 44000, Pakistan
author
  • School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12 Campus, Islamabad, 44000, Pakistan
References
  • [1] S.H. Xie, Y.Y. Liu, J.Y. Li, Appl. Phys. Lett. 92, 243121 (2008), doi: 10.1063/1.2949074
  • [2] P.N. Nirmalraj, T. Lutz, S. Kumar, G.S. Duesberg, J.J. Boland, Nano Lett. 11, 16 (2011), doi: 10.1021/nl101469d
  • [3] I. Mutlay, L.B. Tudoran, Fullerenes Nanotubes Carbon Nanostruct. 22, 413 (2014), doi: 10.1080/1536383X.2012.684186
  • [4] S. Rana, J.W. Cho, L.P. Tan, RSC Adv. 3, 13796 (2013), doi: 10.1039/c3ra40711j
  • [5] G. Cunningham, M. Lotya, N. McEvoy, G.S. Duesberg, P.V.D. Schoot, J.N. Coleman, Nanoscale 20, 6260 (2012), doi: 10.1039/c2nr31782f
  • [6] J. Li, J.K. Kim, Compos. Sci. Technol. 67, 2114 (2007), doi: 10.1016/j.compscitech.2006.11.010
  • [7] B. Zhang, Y. Yu, Y. Liu, Z.D. Huang, Y.B. He, J.K. Kim, Nanoscale 5, 2100 (2013), doi: 10.1039/c2nr33099g
  • [8] J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011), doi: 10.1126/science.1194975
  • [9] U. Khan, A. O'Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Carbon 50, 470 (2012), doi: 10.1016/j.carbon.2011.09.001
  • [10] M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, ACS Nano 4, 315 (2010), doi: 10.1021/nn1005304
  • [11] A. O'Neill, U. Khan, J.N. Coleman, Chem. Mater. 24, 2414 (2012), doi: 10.1021/cm301515z
  • [12] P. May, U. Khan, J.M. Hughes, J.N. Coleman, J. Phys. Chem. C 116, 11393 (2012), doi: 10.1021/jp302365w
  • [13] P. May, U. Khan, A. O'Neill, J.N. Coleman, J. Mater. Chem. 22, 1278 (2012), doi: 10.1039/c1jm15467b
  • [14] G.E. Padawer, N. Beecher, Polym. Eng. Sci. 10, 18 (1970), doi: 10.1002/pen.760100310
  • [15] C.C. Chen, W. Bao, J. Theiss, C. Dames, C.N. Lau, S.B. Cronin, Nano Lett. 9, 4172 (2009), doi: 10.1021/nl9023935
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n4013kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.