Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 4 | 464-467

Article title

Near-Infrared Tunable Reflection and Absorption Using Nanostructured Thin Film Structures Employing Phase-Change Material

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present the design of a polarization-dependent tunable nanostructured thin film absorber in the near-infrared region. Germanium antimonide tellurite (GST) was employed as the phase change material in the designed structure. Our structure is composed of a periodic grating-type array of 150 nm thick Au buried with 50 nm thick GST layer from the top of the Au layer. The period of the gratings is 2 µm and in each period, GST width is 1 µm. GST was selected as the active phase change material because its optical properties undergo a substantial change during a structural transition from amorphous to crystalline phase. The optical absorption and reflection properties of the designed structure with respect to the geometric and material parameters were systematically investigated using the finite difference time domain computations. It was shown that absorption peak or reflection dip at the resonant wavelengths in the near-infrared region was red shifted from 2039 nm to 2143 nm wavelength by switching the phase change material from its amorphous to crystalline states. The distributions of the electric field and absorbed power at the resonant wavelengths with respect to different phases of the GST were investigated to further explain the physical origin of the absorption. Our study provides a path toward the realization of tunable infrared absorbers for applications, such as selective infrared emitters, infrared camouflage, sensors, and photovoltaic devices.

Keywords

EN

Contributors

author
  • Turkish Military Academy, Department of Electrical Engineering, 06654, Ankara, Turkey
author
  • Turkish Military Academy, Department of Electrical Engineering, 06654, Ankara, Turkey

References

  • [1] N. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008), doi: 10.1103/PhysRevLett.100.207402
  • [2] H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16, 7181 (2008), doi: 10.1364/OE.16.007181
  • [3] H. Kocer, J. Nanophoton. 9, 093597 (2015), doi: 10.1117/1.JNP.9.093597
  • [4] H. Kocer, S. Butun, Z. Li, K. Aydin, Sci. Rep. 5, 8157 (2015), doi: 10.1038/srep08157
  • [5] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010), doi: 10.1021/nl9041033
  • [6] K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2, 517 (2011), doi: 10.1038/ncomms1528
  • [7] S. Butun, K. Aydin, Opt. Express 22, 19457 (2014), doi: 10.1364/OE.22.019457
  • [8] W. Streyer, S. Law, G. Rooney, T. Jacobs, D. Wasserman, Opt. Express 21, 9113 (2013), doi: 10.1364/OE.21.009113
  • [9] J.J. Talghader, A.S. Gawarikar, R.P. Shea, Light Sci. Appl. 1, e24 (2012), doi: 10.1038/lsa.2012.24
  • [10] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Nature 416, 61 (2002), doi: 10.1038/416061a
  • [11] Y. Avitzour, Y.A. Urzhumov, G. Shvets, Phys. Rev. B 79, 045131 (2009), doi: 10.1103/PhysRevB.79.045131
  • [12] V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Nano Lett 8, 4391 (2008), doi: 10.1021/nl8022548
  • [13] H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010), doi: 10.1038/nmat2629
  • [14] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Adv. Mater. 21, 3504 (2009), doi: 10.1002/adma.200900331
  • [15] T. Cao, L. Zhang, R.E. Simpson, M.J. Cryan, J. Opt. Soc. Am. B 30, 1580 (2013), doi: 10.1364/JOSAB.30.001580
  • [16] H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Nature 444, 597 (2006), doi: 10.1038/nature05343
  • [17] H.-T. Chen, J.F. O'Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Nat. Photon. 2, 295 (2008), doi: 10.1038/nphoton.2008.52
  • [18] T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, D.N. Basov, Appl. Phys. Lett. 93, 024101 (2008), doi: 10.1063/1.2956675
  • [19] R.L. Voti, M.C. Larciprete, G. Leahu, C. Sibilia, M. Bertolotti, J. Appl. Phys. 112, 034305 (2012), doi: 10.1063/1.4739489
  • [20] K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008), doi: 10.1038/nmat2226
  • [21] T. Cao, C. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Sci. Rep. 4, 3955 (2014), doi: 10.1038/srep03955
  • [22] Lumerical Solutions, Inc., available at: http://www.lumerical.com/tcad-products/fdtd/
  • [23] E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York 1998

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n4010kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.