Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 405-408
Article title

Functionalization and Characterization of MWCNT Produced by Different Methods

Title variants
Languages of publication
The subject of this study is chemical functionalization as means of structural modification of multiwalled carbon nanotubes. The main goal of the experiments was to create highest density of carboxyl groups on multiwalled carbon nanotubes surface, necessary for further nanocomposite application. Two different types of multiwalled carbon nanotubes (I: outer diameter d=50÷ 100 nm, purity ≈84%, synthesized by pyrolysis and II: outer diameter d=10÷40 nm, purity ≈94%, synthesized by chemical vapor deposition) were treated by concentrated nitric acid (HNO₃) and by alkaline mixture (NH₄OH+H₂O₂). The alkaline medium as "milder" and less aggressive than nitric acid, was expected to be less destructive and cause minimal structural damage on multiwalled carbon nanotubes surface. Structural changes due to oxidation were observed by the Raman analysis, while the ratio of the intensities of the D and G peak was used to estimate the concentration of defects. Pristine and functionalized multiwalled carbon nanotubes were characterized by thermogravimetric analysis, scanning electron microscopy, ultraviolet-visible spectroscopy and zeta (ζ) spectroscopy. The results showed that functionalization initiates changes in carbon nanotubes structure as well as in their density of states. It also results in carbon nanotubes shortening and exfoliation and decreases their agglomeration tendency. Carbon nanotubes functionalized by both acid and alkaline treatment can successfully replace conventional carbon fibers as fillers in polymer composites for sensing application.
Physical description
  • [1] S. Iijima, Nature 354, (1991), doi: 10.1038/354056a0
  • [2] A. Merkoci, M. Pumera, X. Llopis, B. Perez, M. Del Valle, S. Alegret, TRAC Trends Anal. Chem. 24, 9 (2005), doi: 10.1016/j.trac.2005.03.019
  • [3] P.M. Ajayan, Chem. Rev. 99, 7 (1999), doi: 10.1021/cr970102g
  • [4] E. Katz, I. Willner, Chem. Phys. Chem. 5, 8 (2004), doi: 10.1002/cphc.200400193
  • [5] S. Orlanducci, V. Sessa, M.L. Terranova, G.A. Battison, S. Battison, R. Gergasi, Carbon 44, 13 (2006), doi: 10.1016/j.carbon.2006.03.018
  • [6] R. Hu, B.A. Cola, N. Haram, I.N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M.E. de la Cruz, J.P. Ferraris, A.A. Zakhidov, R.H. Baughman, Nano Lett. 10, 3 (2010), doi: 10.1021/nl903267n
  • [7] M.S. Arnold, J.D. Zimmerman, C.K. Renshaw, X. Xu, R.R. Lunt, C.M. Austin, S.R. Forrest, Nano Lett. 9, 9 (2009), doi: 10.1021/nl901637u
  • [8] K.P. Yung, J. Wei, B.K. Tay, Diamond Relat. Mater. 18, 9 (2009), doi: 10.1016/j.diamond.2009.02.022
  • [9] Y.C. Tsai, J.D. Huang, C.C. Chiu, Biosens. Bioelectron. 22, 12 (2007), doi: 10.1016/j.bios.2007.01.005
  • [10] S. Ciraci, S. Dag, T. Yildrim, O. Gulseren, R.T. Senger, J. Phys. Condens. Matter 16, 29 (2004), doi: 10.1088/0953-8984/16/29/R01
  • [11] Q.H. Wang, M. Yan, R.P.H. Chang, Appl. Phys. Lett. 78, 1294 (2001), doi: 10.1063/1.1351847
  • [12] N. Karousis, G.E. Tsotsou, F. Evangelista, P. Rudolf, N. Ragoussis, N. Tagmatarchis, J. Phys. Chem. C 112, 35 (2008), doi: 10.1021/jp802920k
  • [13] E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61, 13 (2001), doi: 10.1016/S0266-3538(01)00094-X
  • [14] E.T. Thostenson, C. Li, T.W. Chou, Compos. Sci. Technol. 65, 2005 (2005), doi: 10.1016/j.compscitech.2004.11.003
  • [15] S.C. Tjong, Express Polym. Lett. 4, 9 (2010), doi: 10.3144/expresspolymlett.2010.65
  • [16] N. Nakashima, Int. J. Nanosci. 4, 1 (2005), doi: 10.1142/S0219581X05002985
  • [17] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 3 (2006), doi: 10.1021/cr050569o
  • [18] A. Thess, R. Lee, P. Nikolaev, Science 273, 5274 (1996), doi: 10.1126/science.273.5274.483
  • [19] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, Science 280, 5367 (1998), doi: 10.1126/science.280.5367.1253
  • [20] H. Zhang, H.X. Li, H.M. Cheng, J. Phys. Chem. B 110, 18 (2006), doi: 10.1021/jp060193y
  • [21] O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balza, D.E. Resasco, J. Phys. Chem. B 107, 48 (2003), doi: 10.1021/jp0365099
  • [22] K. Yurekli, C.A. Mitchell, R. Krishnamoorti, J. Am. Chem. Soc. 126, 32 (2004), doi: 10.1021/ja047451u
  • [23] N. Grossiord, O. Regov, J. Loos, J. Meuldijk, C.E. Koning, Anal. Chem. A 77, 16 (2005), doi: 10.1021/ac050358j
  • [24] D. Li, H. Wang, J. Zhu, X. Wang, L. Lu, X. Yang, J. Mater. Sci. Lett. 22, 4 (2003), doi: 10.1023/A:1022391926960
  • [25] Z.H. Wang, G.A. Luo, S.F. Xiao, Proc. IEEE Sensors 2, (2003), doi: 10.1109/ICSENS.2003.1279081
  • [26] J.P. Boudou, J.I. Paredes, A. Cuesta, A. Martinez-Alonso, J.M.D. Tascon, Carbon 41, 41 (2003), doi: 10.1016/S0008-6223(02)00270-1
  • [27] F. Xie, J. Phillips, J.F. Silva, M.C. Palma, J.A. Menendez, Carbon 38, 5 (2000), doi: 10.1016/S0008-6223(99)00156-6
  • [28] C.C. Hu, C.C. Wang, J. Power Source 125, 2 (2004), doi: 10.1016/j.jpowsour.2003.08.002
  • [29] M.S.P. Shaffer, A.H. Windle, Adv. Mater. 11, 11 (1999)
  • [30] X.L. Xie, Y.W. Mai, X.P. Zhou, Mater. Sci. Eng. R Rep. R49, 4 (2005), doi: 10.1016/j.mser.2005.04.002
  • [31] M.S.P. Shaffer, X. Fan, A.H. Windle, Carbon 36, 11 (1998), doi: 10.1016/S0008-6223(98)00130-4
  • [32] J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon, J. Phys. Chem. B 105, 13 (2001), doi: 10.1021/jp002596i
  • [33] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Selimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science 280, 5367 (1998), doi: 10.1126/science.280.5367.1253
  • [34] C. Gao, Y.Z. Jin, H. Kong, R.L.D. Whitby, S.F.A. Acquah, G.Y. Chen, H. Qian, A. Hartschuh, S.R.P. Silva, S. Henley, P. Fearon, H.W. Kroto, D.R.M. Walton, J. Phys. Chem. B 109, 24 (2005), doi: 10.1021/jp051642h
  • [35] K. Kamaras, M.E. Itkis, H. Hu, B. Zhao, R.C. Haddon, Science 301, 5639 (2003), doi: 10.1126/science.1088083
  • [36] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Science 282, 5386 (1998), doi: 10.1126/science.282.5386.95
  • [37] V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.P. Briand, M. Prato, Chem. Commun. 2002, (2002), doi: 10.1039/B209843A
  • [38] D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Chemistry 9, 17 (2003), doi: 10.1002/chem.200304800
  • [39] A. Tomova, A. Petrovski, A. Grozdanov, B. Andonović, P. Paunović, A.T. Dimitrov, in: MM SEE 2015 - Metalurgical and Materials Engineering Congress on South-East Europe, Belgrade, Marija Korać, Association of Metallurgical Engineers of Serbia, Belgrade 2015, p. 336
  • [40] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46, 6 (2008), doi: 10.1016/j.carbon.2008.02.012
  • [41] J. Guo, C. Yang, Z.M. Li, M. Bai, H.J. Liu, Phys. Rev. Lett. 93, 1 (2004), doi: 10.1103/PhysRevLett.93.017402
  • [42] J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bornikowski, R. Smalley, J.M. Tour, J. Am. Chem. Soc. 123, 27 (2001), doi: 10.1021/ja010462s
  • [43] V.A. Sinani, M.K. Gheit, A.A. Yaroslav, A.A. Rakhnyanskaya, K. Sun, A.A. Mamedov, J.P. Wicksted, N.A. Kotov, J. Am. Chem. Soc. 127, 10 (2005), doi: 10.1021/ja045670+
  • [44] X.Qin X, J. Liu, F. Wang, Jing Ji, J. Electroanal. Chem. 651, 2 (2011), doi: 10.1016/j.jelechem.2010.11.032
  • [45] Y. Liu, L.A. Gao, Carbon 43, 1 (2005), doi: 10.1016/j.carbon.2004.08.019
  • [46] G. Trykowski, S. Biniak, L. Stobinski, B. Lesiak, Acta Phys. Pol. A 118, 515 (2010), doi: 10.12693/APhysPolA.118.515
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.