PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 394-401
Article title

Modification of Commercial Activated Carbons for CO₂ Adsorption

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the investigations was a modification of DTO, a commercial activated carbon (AC), to improve CO₂ adsorption capacity. The adsorption of CO₂ up to 40 bar at 40°C temperature was investigated. The volumetric method was applied for CO₂ adsorption isotherm measurements. The starting material - DTO - was modified using chemical activation (KOH, ZnCl₂, K₂CO₃). The textural parameters of all the ACs were determined by nitrogen adsorption at the liquid nitrogen temperature of -196°C on Quadrasorb SI. Results showed that the AC modified with KOH had the highest S_{BET}, V_{tot}, V_{mic} values of 2063 m²/g, 1.13 cm³/g, and 0.67 cm³/g, respectively. ACs with a wider pore size distribution (from micropores to mesopores) were obtained. The maximum CO₂ adsorption was equal to 14.44 mmol/g for DTO/KOH - modified carbon whereas 8.07 mmol/g of CO₂ was adsorbed at DTO. The CO₂ adsorption capacities of the ACs were found to be closely correlated with the BET surface areas of the materials tested. The experimental data was fitted to the Freundlich, Langmuir, Sips and Toth equations to determine the model isotherm. The Sips model was found to be the best for fitting the adsorption of CO₂.
Keywords
EN
Year
Volume
129
Issue
3
Pages
394-401
Physical description
Dates
published
2016-03
received
2015-07-03
(unknown)
2015-12-10
References
  • [1] K. Wenelska, B. Michalkiewicz, J. Gong, T. Tang, R. Kaleńczuk, X. Chen, E. Mijowska, Int. J. Hydrogen Energ. 38, 16179 (2013), doi: 10.1016/j.ijhydene.2013.10.008
  • [2] B. Michalkiewicz, J. Majewska, G. Kądziołka, K. Bubacz, S. Mozia, A.W. Morawski, J. CO₂ Util. 5, 47 (2014), doi: 10.1016/j.jcou.2013.12.004
  • [3] J. Sreńscek-Nazzal, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, J. Chem. Eng. Data 60, 3148 (2015), doi: 10.1021/acs.jced.5b00294
  • [4] H. Kim, J. Lee, S. Lee, I.B. Lee, J. Park, J. Han, Energy 88, 756 (2015), doi: 10.1016/j.energy.2015.05.093
  • [5] B. Michalkiewicz, Z.C. Koren, J. Porous Mater. 22, 635 (2015), doi: 10.1007/s10934-015-9936-6
  • [6] A. Heidari, H. Younesi, A. Rashidi, A. Ghoreyshi, J. Taiwan Inst. Chem. Eng. 45, 579 (2014), doi: 10.1016/j.jtice.2013.06.007
  • [7] Z. Chen, S. Deng, H. Wei, B. Wang, J. Huang, G. Yu, Front. Environ. Sci. Eng. 7, 326 (2013), doi: 10.1007/s11783-013-0510-7
  • [8] M.S. Shafeeyan, W.M. Ashri, W. Daud, A. Houshmand, A. Shamiri, J. Anal. Appl. Pyrolysis 89, 143 (2010), doi: 10.1016/j.jaap.2010.07.006
  • [9] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985), doi: 10.1351/pac198557040603
  • [10] J. Sreńscek-Nazzal, B. Michalkiewicz, Pol. J. Chem. Technol. 13, 63 (2011), doi: 10.2478/v10026-011-0051-4
  • [11] J. Sreńscek-Nazzal, W. Kamińska, B. Michalkiewicz, Z.C. Koren, Ind. Crops Prod. 47, 153 (2013), doi: 10.1016/j.indcrop.2013.03.004
  • [12] J. Hayashia, T. Horikawa, I. Takeda, K. Muroyama, F.N. Ani, Carbon 40, 2381 (2002), doi: 10.1016/S0008-6223(02)00118-5
  • [13] M.A. Lillo-Rodena, D. Cazorla-Amoros, A. Linares-Solano, Carbon 41, 267 (2003), doi: 10.1016/S0008-6223(02)00279-8
  • [14] A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Chem. Eng. J. 171, 760 (2011), doi: 10.1016/j.cej.2011.02.007
  • [15] J. Alcaniz-Monge, J.P. Marco-Lozar, M.A. Lillo-Rodenas, Fuel Process. Technol. 92, 915 (2011), doi: 10.1016/j.fuproc.2010.12.010
  • [16] X. Hu, M. Radosz, K.A. Cychosz, M. Thommes, Environ. Sci. Technol. 45, 7068 (2011), doi: 10.1021/es200782s
  • [17] A. Wahby, J.M. Ramos-Fernandez, M. Martínez-Escandell, A. Sepulveda-Escribano, J. Silvestre-Albero, F. Rodríguez-Reinoso, Chem. Sus. Chem. 3, 974 (2010), doi: 10.1002/cssc.201000083
  • [18] M.M. Maroto-Valer, Z. Tang, Y.Z. Zhang, Fuel Process. Technol. 86, 1487 (2005), doi: 10.1016/j.fuproc.2005.01.003
  • [19] M. Olivares-Marin, M.M. Maroto-Valer, Fuel Process. Technol. 92, 322 (2011), doi: 10.1016/j.fuproc.2010.09.022
  • [20] M.G. Plaza, C. Pevida, C.F. Martin, J. Fermoso, J.J. Pis, F. Rubiera, Sep. Pur. Tech. 71, 102 (2010), doi: 10.1016/j.seppur.2009.11.008
  • [21] M.G. Plaza, C. Pevida, B. Arias, J. Fermoso, M.D. Casal, C.F. Martin, F. Rubiera, J.J. Pis, Fuel 88, 2442 (2009), doi: 10.1016/j.fuel.2009.02.025
  • [22] J.A. Thote, K.S. Iyer, R. Chatti, N.K. Labhsetwar, R.B. Biniwale, S.S. Rayalu, Carbon 48, 396 (2010), doi: 10.1016/j.carbon.2009.09.042
  • [23] T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo, C.E. Snape, Fuel 86, 22 (2007), doi: 10.1016/j.fuel.2006.07.003
  • [24] A. Busch, B.M. Krooss, Y. Gensterblum, F. Bergen, H.J.M. Pagnier, J. Geochem. Explor. 78, 671 (2003), doi: 10.1016/S0375-6742(03)00122-5
  • [25] B. Michalkiewicz, Appl. Catal. A Gen. 307, 270 (2006), doi: 10.1016/j.apcata.2006.04.006
  • [26] B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, J. Hazard. Mater. 158, 65 (2008), doi: 10.1016/j.jhazmat.2008.01.034
  • [27] K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010), doi: 10.1016/j.cej.2009.09.013
  • [28] M. Salmasi, S. Fatemi, M.D. Rad, F. Jadidi, Int. J. Environ. Sci. Technol. 10, 1067 (2013), doi: 10.1007/s13762-013-0334-9
  • [29] A. Behvandi, S. Tourani, World Academy of Science, Eng. Technol. 52, 617 (2011)
  • [30] K.V. Kumara, K. Porkodi, F. Rocha, J. Hazard. Mater. 150, 158 (2008), doi: 10.1016/j.jhazmat.2007.09.020
  • [31] J.F. Porter, G. McKay, K.H. Choy, Chem. Eng. Sci. 54, 5863 (1999), doi: 10.1016/S0009-2509(99)00178-5
  • [32] D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)
  • [33] A. Jumasiah, T.G. Chuah, J. Gimbon, T.S.Y. Choong, I. Azni, Desalination 186, 57 (2005), doi: 10.1016/j.desal.2005.05.015
  • [34] L.M. Sikhwivhilu, S.S. Ray, N.J. Coville, Appl. Phys. A 94, 963 (2009), doi: 10.1007/s00339-008-4877-4
  • [35] C. Murugan, H.C. Bajaj, R.V. Jasra, Catal. Lett. 137, 224 (2010), doi: 10.1007/s10562-010-0348-6
  • [36] J. Lach, S. Biniak, M. Walczyk, Węgiel aktywny w ochronie środowiska i przemyśle 59, 62 (2006)
  • [37] Y. Li, M. Zijll, S. Chiang, N. Pan, J. Power. Sour. 196, 6003 (2011), doi: 10.1016/j.jpowsour.2011.02.092
  • [38] M. Veres, M. Fule, S. Toth, M. Koos, I. Pocsik, Diamond Relat. Mater. 13, 1412 (2004), doi: 10.1016/j.diamond.2004.01.041
  • [39] A. Janes, H. Kurig, E. Lust, Carbon 45, 1226 (2007), doi: 10.1016/j.carbon.2007.01.024
  • [40] C. Guan, L.S. Loo, K. Wang, C. Yang, Energy Convers. Manage. 52, 1258 (2011), doi: 10.1016/j.enconman.2010.09.022
  • [41] R. Kumar, R.S. Tiwari, O.N. Srivastava, Nano. Res. Lett. 6, 92 (2011), doi: 10.1186/1556-276X-6-92
  • [42] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 3 (1970), doi: 10.1063/1.1674108
  • [43] J. Qiu, Y. Li, Y. Wang, C. Liang, T. Wang, D. Wang, Carbon 41, 767 (2003), doi: 10.1016/S0008-6223(02)00392-5
  • [44] J. Ma, Ch. Si, Y. Li, R. Li, Adsorption 18, 503 (2012), doi: 10.10007/s10450-012-9440-0
  • [45] W. Shao, L. Zhang, L. Li, R.L. Lee, Adsorption 15, 497 (2009), doi: 10.1007/s10450-009-9200-y
  • [46] P. Ning, F. Li, H. Yi, X. Tang, J. Peng, Y. Li, D. He, H. Deng, Sep. Pur. Tech. 98, 321 (2012), doi: 10.1016/j.seppur.2012.07.001
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n326kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.