Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 371-377

Article title

The Calculation for Strain Distributions and Electronic Structure of InAs/GaAs Quantum Dots Based on the Eight-Band k·p Theory

Content

Title variants

Languages of publication

EN

Abstracts

EN
In order to analyze the strain distribution of InAs/GaAs quantum dot in a pyramidal geometry, the traditional calculation method is based on the single band envelope approximation with the modified band edge from the eight band k·p theory. In this paper, we use the eight band k·p Hamiltonian to calculate, and the piezoelectric effects and the electronic structure are also discussed subsequently. To this end, some necessarily derived formulae in calculations about using the finite element calculation software COMSOL are presented in this paper. The results show the details about strain distributions, piezoelectric effects and electronic structure of an InAs/GaAs pyramidal quantum dot, verify the feasibility and efficiency of the calculation method.

Keywords

EN

Year

Volume

129

Issue

3

Pages

371-377

Physical description

Dates

published
2016-03
received
2015-09-09

Contributors

author
  • State Key Laboratory of IPOC, Beijing University of Posts and Telecommunications, Beijing 100876, China
author
  • State Key Laboratory of IPOC, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

References

  • [1] A. Gonzalez, B. Partoens, F.M. Peeters, Phys. Rev. B 56, 15740 (1997), doi: 10.1103/PhysRevB.56.15740
  • [2] R. Heitz, A. Kalburge, Q. Xie, Phys. Rev. B 57, 9050 (1998), doi: 10.1103/PhysRevB.57.9050
  • [3] C. Bose, C. Chakraborty, C.K. Sarkar, Solid-State Electron. 41, 1383 (1997), doi: 10.1016/S0038-1101(97)87369-8
  • [4] I.P. Radko, M.G. Nielsen, O. Albrektsen, Opt. Expr. 18, 18633 (2010), doi: 10.1364/OE.18.018633
  • [5] W.B. Yu, A. Madhukar, Phys. Rev. Lett. 79, 905 (1997), doi: 10.1103/PhysRevLett.79.905
  • [6] A.D. Andreev, E.P. O'Reilly, Phys. Rev. B 62, 15851 (2000), doi: 10.1103/PhysRevB.62.15851
  • [7] A.V. Dvurechenskii, A.V. Nenashev, A.I. Yakimov, Nanotechnology 13, 75 (2002), doi: 10.1088/0957-4484/13/1/317
  • [8] Y. Kikuchi, H. Sugii, K. Shintani, J. Appl. Phys. 89, 1191 (2001), doi: 10.1063/1.1335822
  • [9] G.S. Pearson, D.A. Faux, J. Appl. Phys. 88, 730 (2000), doi: 10.1063/1.373729
  • [10] T. Benabbas, Y. Androussi, J. Appl. Phys. 86, 1945 (1999), doi: 10.1063/1.370991
  • [11] C. Pryor, Phys. Rev. B 57, 7190 (1998), doi: 10.1103/PhysRevB.57.7190
  • [12] A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76, 205324 (2007), doi: 10.1103/PhysRevB.76.205324
  • [13] M.A. Migliorato, D. Powell, A.G. Cullis, Phys. Rev. B 74, 245332 (2006), doi: 10.1103/PhysRevB.74.245332
  • [14] G. Bester, X.F. Wu, D. Vanderbilt, Phys. Rev. Lett. 96, 187602 (2006), doi: 10.1103/PhysRevLett.96.187602
  • [15] G. Bester, A. Zunger, X.F. Wu, Phys. Rev. B 74, 081305 (2006), doi: 10.1103/PhysRevB.74.081305
  • [16] A. Schliwa, M. Winkelnkemper, A. Lochmann, Phys. Rev. B 80, 161307(R) (2009), doi: 10.1103/PhysRevB.80.161307
  • [17] R. Singh, G. Bester, Phys. Rev. Lett. 103, 063601 (2009), doi: 10.1103/PhysRevLett.103.063601

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n322kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.