PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 371-377
Article title

The Calculation for Strain Distributions and Electronic Structure of InAs/GaAs Quantum Dots Based on the Eight-Band k·p Theory

Content
Title variants
Languages of publication
EN
Abstracts
EN
In order to analyze the strain distribution of InAs/GaAs quantum dot in a pyramidal geometry, the traditional calculation method is based on the single band envelope approximation with the modified band edge from the eight band k·p theory. In this paper, we use the eight band k·p Hamiltonian to calculate, and the piezoelectric effects and the electronic structure are also discussed subsequently. To this end, some necessarily derived formulae in calculations about using the finite element calculation software COMSOL are presented in this paper. The results show the details about strain distributions, piezoelectric effects and electronic structure of an InAs/GaAs pyramidal quantum dot, verify the feasibility and efficiency of the calculation method.
Keywords
EN
Year
Volume
129
Issue
3
Pages
371-377
Physical description
Dates
published
2016-03
received
2015-09-09
References
  • [1] A. Gonzalez, B. Partoens, F.M. Peeters, Phys. Rev. B 56, 15740 (1997), doi: 10.1103/PhysRevB.56.15740
  • [2] R. Heitz, A. Kalburge, Q. Xie, Phys. Rev. B 57, 9050 (1998), doi: 10.1103/PhysRevB.57.9050
  • [3] C. Bose, C. Chakraborty, C.K. Sarkar, Solid-State Electron. 41, 1383 (1997), doi: 10.1016/S0038-1101(97)87369-8
  • [4] I.P. Radko, M.G. Nielsen, O. Albrektsen, Opt. Expr. 18, 18633 (2010), doi: 10.1364/OE.18.018633
  • [5] W.B. Yu, A. Madhukar, Phys. Rev. Lett. 79, 905 (1997), doi: 10.1103/PhysRevLett.79.905
  • [6] A.D. Andreev, E.P. O'Reilly, Phys. Rev. B 62, 15851 (2000), doi: 10.1103/PhysRevB.62.15851
  • [7] A.V. Dvurechenskii, A.V. Nenashev, A.I. Yakimov, Nanotechnology 13, 75 (2002), doi: 10.1088/0957-4484/13/1/317
  • [8] Y. Kikuchi, H. Sugii, K. Shintani, J. Appl. Phys. 89, 1191 (2001), doi: 10.1063/1.1335822
  • [9] G.S. Pearson, D.A. Faux, J. Appl. Phys. 88, 730 (2000), doi: 10.1063/1.373729
  • [10] T. Benabbas, Y. Androussi, J. Appl. Phys. 86, 1945 (1999), doi: 10.1063/1.370991
  • [11] C. Pryor, Phys. Rev. B 57, 7190 (1998), doi: 10.1103/PhysRevB.57.7190
  • [12] A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76, 205324 (2007), doi: 10.1103/PhysRevB.76.205324
  • [13] M.A. Migliorato, D. Powell, A.G. Cullis, Phys. Rev. B 74, 245332 (2006), doi: 10.1103/PhysRevB.74.245332
  • [14] G. Bester, X.F. Wu, D. Vanderbilt, Phys. Rev. Lett. 96, 187602 (2006), doi: 10.1103/PhysRevLett.96.187602
  • [15] G. Bester, A. Zunger, X.F. Wu, Phys. Rev. B 74, 081305 (2006), doi: 10.1103/PhysRevB.74.081305
  • [16] A. Schliwa, M. Winkelnkemper, A. Lochmann, Phys. Rev. B 80, 161307(R) (2009), doi: 10.1103/PhysRevB.80.161307
  • [17] R. Singh, G. Bester, Phys. Rev. Lett. 103, 063601 (2009), doi: 10.1103/PhysRevLett.103.063601
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n322kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.