PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 355-358
Article title

Electric Relaxation in Nb₆VSb₃O₂₅-Ceramics

Content
Title variants
Languages of publication
EN
Abstracts
EN
Broadband dielectric spectroscopy measurements of Nb₆VSb₃O₂₅ showed that in both the real (ε') and imaginary (ε'') components of permittivity there is visible relaxation process strongly obscured by dc conductivity. Application of the electric modulus representation of the data enables to study temperature evolution of this relaxation together with conductivity relaxation. It was showed that the activation energies for both processes are close. Low-frequency loss tangent increases strongly with temperature, suggesting that in the compound under study additional energy losses are associated with the conduction of electric current, as determined by the Joule-Lenz law.
Keywords
EN
Contributors
author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, al. Piastów 42, 71-065 Szczecin, Poland
author
  • Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, al. Piastów 42, 71-065 Szczecin, Poland
author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
  • Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
  • Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
References
  • [1] E. Filipek, M. Piz, J. Therm. Anal. Calorim. 101, 447 (2010), doi: 10.1007/s10973-010-0781-1
  • [2] E. Filipek, M. Piz, Patent RP No. 213420 B1 (2013)
  • [3] M. Ziółek, H. Golińska-Mazwa, E. Filipek, M. Piz, Catal. Today 187, 159 (2012), doi: 10.1016/j.cattod.2011.10.038
  • [4] E. Filipek, M. Piz, J. Alloy. Compd. 661, 141 (2016), doi: 10.1016/j.jallcom.2015.11.061
  • [5] J. Typek, G. Zolnierkiewicz, A. Cyran, K. Wardal, E. Filipek, M. Piz, in: Proc. Conf. FNMA'11, IMIM'11, AUXETICS'11, Eds. J. Rybicki, K.W. Wojciechowski, Task Publishing, Gdańsk 2011, Abstract book, P62, 2011, p. 181
  • [6] T. Groń, E. Filipek, M. Piz, H. Duda, Mater. Res. Bull. 51, 105 (2014), doi: 10.1016/j.materresbull.2013.12.008
  • [7] U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, Phys. Rev. E 59, 6924 (1999), doi: 10.1103/PhysRevE.59.6924
  • [8] A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D Appl. Phys. 38, 1450 (2005), doi: 10.1088/0022-3727/38/9/019
  • [9] P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)
  • [10] K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941), doi: 10.1063/1.1750906
  • [11] H. Wagner, R. Richert, Polymer 38, 5801 (1997), doi: 10.1016/S0032-3861(97)00122-5
  • [12] C. Leon, M.L. Lucia, J. Santamaria, Phys. Rev. B 55, 882 (1997), doi: 10.1103/PhysRevB.55.882
  • [13] R. Richert, H. Wagner, Solid State Ion 105, 167 (1998), doi: 10.1016/S0167-2738(97)00461-X
  • [14] N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford 1971
  • [15] Encyclopaedia of Modern Physics, Ed. A.K. Wróblewski, PWN, Warsaw 1983 (in Polish)
  • [16] J.G. Simmons, Phys. Rev. 155, 657 (1967), doi: 10.1103/PhysRev.155.657
  • [17] C. Li, J. Wang, W. Su, H. Chen, W. Wang, D. Zhuang, Physica B 307, 1 (2001), doi: 10.1016/S0921-4526(01)01026-2
  • [18] T. Groń, E. Filipek, M. Piz, H. Duda, T. Mydlarz, Mater. Res. Bull. 48, 2712 (2013), doi: 10.1016/j.materresbull.2013.03.030
  • [19] T. Groń, E. Tomaszewicz, Z. Kukuła, S. Pawlus, B. Sawicki, Mater. Sci. Eng. B 184, 14 (2014), doi: 10.1016/j.mseb.2014.01.006
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n318kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.