Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 348-351

Article title

Influence of the Hydrogen Adsorption to the Optical Properties of Boron Nitride Nanotubes

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this research we have studied physisorption of hydrogen molecules on armchair (3,3) boron-nitride nanotube using density functional methods. Optical properties of the boron-nitride nanotube, with and without adsorbed H₂ molecules, were investigated under parallel and perpendicular polarized electric fields. The results indicate that the nanotube optical gap slightly changes due to H₂ physisorption and increasing H₂ physisorption suppresses the boron-nitride nanotube optical spectrum. Also, the nanotube gets more transparent as the H₂ concentration increases, in other words boron-nitride nanotube dielectric function decreases. Anisotropic dielectric function is another result which is determined by random phase approximation method.

Keywords

Contributors

author
  • Institute of Nanoscience and Nanotechnology, Kashan University, Kashan, Iran

References

  • [1] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377379 (1997), doi: 10.1038/386377a0
  • [2] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610613 (2009), doi: 10.1126/science.1167130
  • [3] S.H. Jhi, Y.K. Kwon, Phys. Rev. B 69, 245407 (2004), doi: 10.1103/PhysRevB.69.245407
  • [4] A.H. Bayani, N. Shahtahmassebi, F.D. Vahedi, Physica E 53, 168 (2013), doi: 10.1016/j.physe.2013.05.008
  • [5] F. Costanzo, P.L. Silvestrelli, F. Ancilotto, J. Chem. Theory Comput. 8, 1288 (2012), doi: 10.1021/ct300143a
  • [6] Y. Wang, J.T.W. Yeow, J. Sensors 2009, 493904 (2009), doi: 10.1155/2009/493904
  • [7] M. Dell'Angela, G. Kladnik, A. Cossaro, A. Verdini, M. Kamenetska, I. Tamblyn, S.Y. Quek, J.B. Neaton, D. Cvetko, A. Morgante, L. Venkataraman, Nano Lett. 10, 2470 (2010), doi: 10.1021/nl100817h
  • [8] L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nano Lett. 6, 458 (2006), doi: 10.1021/nl052373+
  • [9] D.J. Mowbray, G. Jones, K.S.J. Thygesen, Chem. Phys. 128, 111103 (2008), doi: 10.1063/1.2894544
  • [10] J. Zhao, A. Buldum, Jie Han, Jian Ping Lu, Nanotechnology 13, 195 (2002), doi: 10.1088/0957-4484/13/2/312
  • [11] M. Radosavljevic, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003), doi: 10.1063/1.1581370
  • [12] T. Oku, N. Koi, K. Suganuma, J. Phys. Chem. Solids 69, 1228 (2008), doi: 10.1016/j.jpcs.2007.10.116
  • [13] D.V. Fakhrabad, T. Movlarooy, N. Shahtahmassebi, Phys. Status Solidi B 249, 1027 (2012), doi: 10.1002/pssb.201147475
  • [14] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996), doi: 10.1103/PhysRevB.54.16533
  • [15] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [16] N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991), doi: 10.1103/PhysRevB.43.1993
  • [17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 39550219 (2009), doi: 10.1088/0953-8984/21/39/395502
  • [18] J.M. Soler, E. Artacho, J.D. Gale, A. Garcıa, J. Junquera, P. Ordejon, D.S. Portal, J. Phys. Condens. Matter 14, 2745 (2002), doi: 10.1088/0953-8984/14/11/302
  • [19] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [20] J.G. Esteve, F. Falceto, C.G. Canal, Phys. Lett. A 374, 819 (2010), doi: 10.1016/j.physleta.2009.12.005
  • [21] T.L. Pham, P.V. Dung, A. Sugiyama, N.D. Duc, T. Shimoda, A. Fujiwara, D.H. Chi, Comput. Mater. Sci. 49, S15 (2010), doi: 10.1016/j.commatsci.2010.02.041
  • [22] X. Wu, J. Yang, J.G. Hou, Q. Zhu, J. Chem Phys. 121, 8481 (2004), doi: 10.1063/1.1799958
  • [23] C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006), doi: 10.1016/j.cpc.2006.03.005

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n316kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.