PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 348-351
Article title

Influence of the Hydrogen Adsorption to the Optical Properties of Boron Nitride Nanotubes

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this research we have studied physisorption of hydrogen molecules on armchair (3,3) boron-nitride nanotube using density functional methods. Optical properties of the boron-nitride nanotube, with and without adsorbed H₂ molecules, were investigated under parallel and perpendicular polarized electric fields. The results indicate that the nanotube optical gap slightly changes due to H₂ physisorption and increasing H₂ physisorption suppresses the boron-nitride nanotube optical spectrum. Also, the nanotube gets more transparent as the H₂ concentration increases, in other words boron-nitride nanotube dielectric function decreases. Anisotropic dielectric function is another result which is determined by random phase approximation method.
Keywords
Publisher

Year
Volume
129
Issue
3
Pages
348-351
Physical description
Dates
published
2016-03
received
2015-07-17
(unknown)
2016-02-19
Contributors
author
  • Institute of Nanoscience and Nanotechnology, Kashan University, Kashan, Iran
References
  • [1] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377379 (1997), doi: 10.1038/386377a0
  • [2] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610613 (2009), doi: 10.1126/science.1167130
  • [3] S.H. Jhi, Y.K. Kwon, Phys. Rev. B 69, 245407 (2004), doi: 10.1103/PhysRevB.69.245407
  • [4] A.H. Bayani, N. Shahtahmassebi, F.D. Vahedi, Physica E 53, 168 (2013), doi: 10.1016/j.physe.2013.05.008
  • [5] F. Costanzo, P.L. Silvestrelli, F. Ancilotto, J. Chem. Theory Comput. 8, 1288 (2012), doi: 10.1021/ct300143a
  • [6] Y. Wang, J.T.W. Yeow, J. Sensors 2009, 493904 (2009), doi: 10.1155/2009/493904
  • [7] M. Dell'Angela, G. Kladnik, A. Cossaro, A. Verdini, M. Kamenetska, I. Tamblyn, S.Y. Quek, J.B. Neaton, D. Cvetko, A. Morgante, L. Venkataraman, Nano Lett. 10, 2470 (2010), doi: 10.1021/nl100817h
  • [8] L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nano Lett. 6, 458 (2006), doi: 10.1021/nl052373+
  • [9] D.J. Mowbray, G. Jones, K.S.J. Thygesen, Chem. Phys. 128, 111103 (2008), doi: 10.1063/1.2894544
  • [10] J. Zhao, A. Buldum, Jie Han, Jian Ping Lu, Nanotechnology 13, 195 (2002), doi: 10.1088/0957-4484/13/2/312
  • [11] M. Radosavljevic, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003), doi: 10.1063/1.1581370
  • [12] T. Oku, N. Koi, K. Suganuma, J. Phys. Chem. Solids 69, 1228 (2008), doi: 10.1016/j.jpcs.2007.10.116
  • [13] D.V. Fakhrabad, T. Movlarooy, N. Shahtahmassebi, Phys. Status Solidi B 249, 1027 (2012), doi: 10.1002/pssb.201147475
  • [14] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996), doi: 10.1103/PhysRevB.54.16533
  • [15] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [16] N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991), doi: 10.1103/PhysRevB.43.1993
  • [17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 39550219 (2009), doi: 10.1088/0953-8984/21/39/395502
  • [18] J.M. Soler, E. Artacho, J.D. Gale, A. Garcıa, J. Junquera, P. Ordejon, D.S. Portal, J. Phys. Condens. Matter 14, 2745 (2002), doi: 10.1088/0953-8984/14/11/302
  • [19] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [20] J.G. Esteve, F. Falceto, C.G. Canal, Phys. Lett. A 374, 819 (2010), doi: 10.1016/j.physleta.2009.12.005
  • [21] T.L. Pham, P.V. Dung, A. Sugiyama, N.D. Duc, T. Shimoda, A. Fujiwara, D.H. Chi, Comput. Mater. Sci. 49, S15 (2010), doi: 10.1016/j.commatsci.2010.02.041
  • [22] X. Wu, J. Yang, J.G. Hou, Q. Zhu, J. Chem Phys. 121, 8481 (2004), doi: 10.1063/1.1799958
  • [23] C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006), doi: 10.1016/j.cpc.2006.03.005
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n316kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.