Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 340-343

Article title

A Unified Calculation of the Optical and EPR Spectral Data for the Trigonal Cr³⁺ Center in Cr³⁺-Doped α-RbAl(SO₄)₂·12H₂O Alum Crystal

Content

Title variants

Languages of publication

EN

Abstracts

EN
The optical band positions and the spin-Hamiltonian parameters (g factors g_{∥}, g_{⊥}, and zero-field splitting parameter D) of alum α-RbAl(SO₄)₂·12H₂O:Cr³⁺ are calculated by diagonalizing the 120× 120 complete energy matrix based on the two-spin-orbit-coupling-parameter model. The model takes into account not only the contributions due to the spin-orbit-coupling parameter of central d^{n} ion in the conventional crystal field theory, but also those due to ligands via covalence effect. The calculation indicates that the fourteen observed spectral data (eleven optical band positions and three spin-Hamiltonian parameters) can be reasonably and uniformly explained with four adjustable parameters (the Racah parameters B, C, intrinsic parameter A̅₄(R) in the superposition model, and the trigonal distortion angle β). The calculations also suggest that contrary to the previous findings, the trigonal distortion of Cr³⁺ (entering the Al³⁺ site in the host crystal) center in α-RbAl(SO₄)₂·12H₂O is induced mainly by the oxygen (or water) octahedron around the Cr³⁺ ion rather than the more distant neighbors.

Keywords

Contributors

author
  • School of Physics and Electronic Engineering, Mianyang Normal University, Mianyang 621000, P.R. China
author
  • School of Physics and Electronic Engineering, Mianyang Normal University, Mianyang 621000, P.R. China
  • Research Center of Computational Physics, Mianyang Normal University, Mianyang 621000, P.R. China
author
  • School of Physics and Electronic Engineering, Mianyang Normal University, Mianyang 621000, P.R. China
  • Department of Material Science, Sichuan University, Chengdu 610064, P.R. China

References

  • [1] J.K. Beattie, S.P. Best, B.W. Skelton, A.H. White, J. Chem. Soc. Dalton Trans., 2105 (1981), doi: 10.1039/dt9810002105
  • [2] S.P. Best, J.B. Forsyth, J. Chem. Soc. Dalton Trans., 395 (1990), doi: 10.1039/dt9900000395
  • [3] L. Dubcki, R. Bramley, Chem. Phys. Lett. 272, 55 (1997), doi: 10.1016/S0009-2614(97)00468-5
  • [4] A.R. Lim, H.G. Moon, J.H. Chang, Chem. Phys. 371, 91 (2010), doi: 10.1016/j.chemphys.2010.04.008
  • [5] A.R. Lim, Solid State Nucl. Magn. Reson. 36, 45 (2009), doi: 10.1016/j.ssnmr.2009.05.002
  • [6] S. Sinha, R. Srinivasan, J. Phys. Chem. Solids 45, 665 (1984), doi: 10.1016/0022-3697(84)90060-X
  • [7] G.P. Vishnevskaya, A.R. Fakhrutdinov, Phys. Solid State 35, 912 (1993)
  • [8] F. Gronvold, K.K. Meisingset, J. Chem. Thermodyn. 14, 1083 (1982), doi: 10.1016/0021-9614(82)90152-5
  • [9] A.G. Danilov, J.C. Vial, A. Manoogian, Phys. Rev. B 8, 312 (1973), doi: 10.1103/PhysRevB.8.312
  • [10] P.L.W. Trgenna-Piggott, H. Weihe, A.L. Barran, Inorg. Chem. 42, 8504 (2003), doi: 10.1021/ic0347642
  • [11] R.S. Armstrong, A.J. Beey, B.D. Cole, K.W. Nugent, J. Chem. Soc. Dalton Trans., 363 (1997), doi: 10.1039/a605705e
  • [12] P.L.W. Tregenna-Piggot, S.P. Best, H.U. Gudel, H. Weihe, C.C. Wilson, J. Solid State Chem. 145, 460 (1999), doi: 10.1006/jssc.1999.8154
  • [13] K.V.S. Rao, M.D. Sastry, P. Venkateswarlu, J. Chem. Phys. 49, 4984 (1968), doi: 10.1063/1.1669988
  • [14] V.K. Jain, J. Chem. Phys. 69, 3877 (1978), doi: 10.1063/1.437021
  • [15] V.K. Jain, P. Venkateswaru, Mol. Phys. 36, 1577 (1978), doi: 10.1080/00268977800102601
  • [16] A. Manoogian, B. Auger, Can. J. Phys. 52, 1731 (1974)
  • [17] K. Ranesh, Y.P. Reddy, Solid State Commun. 62, 837 (1987), doi: 10.1016/0038-1098(87)90832-5
  • [18] M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992), doi: 10.1103/PhysRevB.46.8974
  • [19] Y. Mei, R.M. Peng, W.C. Zheng, C.F. Wei, Opt. Mater. 39, 232 (2015), doi: 10.1016/j.optmat.2014.11.032
  • [20] Y. Mei, Y.G. Yang, W.C. Zheng, Physica B 407, 3881 (2012), doi: 10.1016/j.physb.2012.06.014
  • [21] J.D. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989), doi: 10.1088/0034-4885/52/6/002
  • [22] M. Andrut, M. Wildner, C. Rudowicz, in: EMU Notes in Mineralogy, Vol. 6, Eötvös Univ. Press, Budapest 2004, Ch. 4, p. 145
  • [23] J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964
  • [24] W.C. Zheng, H.G. Liu, G.M. Jia, L. He, Spectrochim. Acta A 71, 1551 (2008), doi: 10.1016/j.saa.2008.06.001
  • [25] B.G. Wybourne, Spectroscopic Properties of Rare Earth, Wiley, New York 1965
  • [26] C. Rudowicz, Y.Y. Yeung, Z.Y. Yang, J. Qin, J. Phys. Condens. Matter 14, 5619 (2002), doi: 10.1088/0953-8984/14/22/314
  • [27] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition Metal Ions in Crystals, Academic Press, New York 1970
  • [28] E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963), doi: 10.1063/1.1733573
  • [29] E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967), doi: 10.1063/1.1712084
  • [30] W.C. Zheng, Physica B 215, 255 (1995), doi: 10.1016/0921-4526(95)00408-2

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n314kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.