PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 323-328
Article title

The Néel Magnetic Relaxation Dynamics in Nanoparticle Systems - Phenomenological Approach versus Stochastic Approach

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In nanomagnetism, the studies of magnetic nanoparticle systems are of particular interest from both experimental and theoretical points of view. Experimentally, the measurements made on such a system are hard to interpret. It is very difficult to distinguish the effect of the magnetic dipole interactions from the effects of size distribution or effective magnetic anisotropy constants. In this respect, the simulation models can help. This paper presents a study comparing the two conventional approaches, using simulation models for the magnetic relaxation dynamics of nanoparticle systems, i.e. a phenomenological Ising-type approach, on two levels, and a stochastic approach. The paper also shows a way of using these approaches in creating a model to simulate the Néel magnetic relaxation time for aligned magnetic nanoparticle systems.
Keywords
EN
Publisher

Year
Volume
129
Issue
3
Pages
323-328
Physical description
Dates
published
2016-03
(unknown)
03-02
received
2013-11-11
(unknown)
2016-01 30, 2016
Contributors
author
  • University "Politehnica" of Timisoara, Engineering Faculty of Hunedoara, Department of Electrical Engineering and Industrial IT, Revolutiei no. 5, Hunedoara, Romania
References
  • [1] K.M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010), doi: 10.1109/TMAG.2010.2046907
  • [2] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003), doi: 10.1088/0022-3727/36/13/201
  • [3] Magnetic Cell Separation, Eds. M. Zborowski, J. Chalmers, Vol. 32, Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier, Amsterdam 2008, doi: 10.1016/S0075-7535(06)32021-9
  • [4] H.B. Na, I.C. Song, T. Hyeon, Adv. Mater. 21, 2133 (2009), doi: 10.1002/adma.200802366
  • [5] K. Hamad-Schifferli, J.J. Schwartz, A.T. Santos, S. Zhang, J.M. Jacobson, Nature 415, 152 (2002), doi: 10.1038/415152a
  • [6] S.C. McBain, U. Griesenbach, S. Xenariou, A. Keramane, C.D. Batich, E.W.F. Falton, J. Dobson, Nanotechnology 19, 405102 (2008), doi: 10.1088/0957-4484/19/40/405102
  • [7] S. Takeda, B. Terazono, F. Mishima, H. Nakagami, S. Nishijima, Y. Kaneda, J. Nanosci. Nanotechnol. 6, 3269 (2006), doi: 10.1166/jnn.2006.483
  • [8] F.J. Boehm, C. Aicheng, Recent Patents Biomed. Eng. 2, 30 (2009), doi: 10.2174/1874764710902020110
  • [9] Y. Yuan, D.A. Tasciuc Borca, J. Magn. Magn. Mater. 323, 2463 (2011), doi: 10.1016/j.jmmm.2011.05.018
  • [10] V. Sreeja, P. Joy, Int. J. Nanotechnol. 8, 907 (2011), doi: 10.1504/IJNT.2011.044435
  • [11] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn. Magn. Mater. 293, 483 (2005), doi: 10.1016/j.jmmm.2005.01.064
  • [12] S.M. Bird, J.M. Galloway, A.E. Rawlings, J.P. Bramble, S.S. Staniland, Nanoscale 7, 7340 (2015), doi: 10.1039/c5nr00651a
  • [13] L. Néel, C.R. Acad. Sci. Paris 228, 664 (1949)
  • [14] W.F. Brown Jr., Magnetostatic Principles in Ferromagnetism, North-Holland, Amsterdam 1962, doi: 10.1016/0022-3697(63)90211-7
  • [15] S. Shtrikman, E.P. Wohlfarth, Phys. Lett. A 85, 457 (1981), doi: 10.1016/0375-9601(81)90441-2
  • [16] J.L. Dormann, L. Bessais, D. Fiorani, J. Phys. C 21, 2015 (1988), doi: 10.1088/0022-3719/21/10/019
  • [17] M.F. Hansen, S. Mørup, J. Magn. Magn. Mater. 184, 262 (1998), doi: 10.1016/S0304-8853(97)01165-7
  • [18] Tran Nguyen Lan, Tran Hoang Hai, Comput. Mater. Sci. 49, S287 (2010), doi: 10.1016/j.commatsci.2010.01.025
  • [19] R. Sharma, C. Pratima, S. Lamba, S. Annapoorni, Pramana J. Phys. Indian Acad. Sci. 65, 739 (2005), doi: 10.1007/BF03010462
  • [20] S. Ruta, O. Hovorka, R. Chantrell, Sci. Rep. 5, 9090 (2015), doi: 10.1038/srep09090
  • [21] D.B. Reeves, J.B. Weaver, Appl. Phys. Lett. 104, 102403 (2014), doi: 10.1063/1.4867987
  • [22] P.M. Déjardin, J. Appl. Phys. 110, 113921 (2011), doi: 10.1063/1.3665886
  • [23] C. Haase, U. Nowak, Phys. Rev. B 85, 045435 (2012), doi: 10.1103/PhysRevB.85.045435
  • [24] R. Prozorov, Y. Yeshurun, Phys. Rev. B 59, 6959 (1999), doi: 10.1103/PhysRevB.59.6956
  • [25] M. Osaci, M. Panoiu, T. Heput, I. Muscalagiu, Appl. Math. Model. 30, 545 (2006), doi: 10.1016/j.apm.2005.11.013
  • [26] W.T. Coffey, P.J. Cregg, Y. U. P. Kalmykov On the Theory of Debye and Néel Relaxation of Single Domain Ferromagnetic Particles, Advances in Chemical Physics, Vol. LXXXIII, Wiley, New York 1993, doi: 10.1002/9780470141410.ch5
  • [27] W.F. Brown Jr., Phys. Rev. 130, 1677 (1963), doi: 10.1063/1.1729489
  • [28] W.T. Coffey, Yu.P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Series in Contemporary Chemical Physics, Vol. 27, World Sci. Publ., London 2012
  • [29] L. Lopez-Diaz, L. Torres, E. Moro, Phys. Rev. B 65, 224406 (2002), doi: 10.1103/PhysRevB.65.224406
  • [30] F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York 1965
  • [31] R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002), doi: 10.1016/S0304-8853(02)00706-0
  • [32] D.L. Beke, Cryst. Res. Technol. 33, 1039 (1998)
  • [33] S. Mørup, M.F. Hansen, C. Frandsen, Beilstein J. Nanotechnol. 1, 182 (2010), doi: 10.3762/bjnano.1.22
  • [34] A. Silva, T. Oliveira, J.B. Mamani, S.M.F. Malheiros, L. Malavolta, L.F. Pavon, T.T. Sibov, E. Amaro Jr., A. Tannús, E.L.G. Vidoto, M.J. Matins, R.S. Santos, L.F. Gamarra, Int. J. Nanomed. 6, 591 (2011), doi: 10.2147/IJN.S14737
  • [35] K. Parvin, J. Ma, J. Ly, X.C. Sun, D.E. Nikles, K. Sun, L.M. Wang, J. Appl. Phys. 95, 7121 (2004), doi: 10.1063/1.1682783
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n311kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.