PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 304-309
Article title

Oscillatory Regularity of Charge Carrier Trap Energy Spectra in ZnSe Single Crystals

Content
Title variants
Languages of publication
EN
Abstracts
EN
This article presents the results of an experimental investigation of the energy spectra of charge carrier traps in undoped high-resistivity ZnSe single crystals. Fourteen peaks were found in the thermostimulated luminescence spectra of the ZnSe samples at temperatures between 8 K and 450 K, and the thermal activation energies of the charge carrier traps were estimated for the most intense peaks. It was found that the energy spectra of the charge carrier traps in ZnSe exhibit oscillatory regularity, and the energy of a vibrational quantum was estimated to be ħω = 206 cm¯¹, which is in good agreement with the vibrational mode in the Raman spectrum. Additionally, a linear relationship was observed between the thermal activation energies of the charge carrier traps and the temperature positions of the maxima in the thermostimulated luminescence of ZnSe.
Keywords
EN
Publisher

Year
Volume
129
Issue
3
Pages
304-309
Physical description
Dates
published
2016-03
received
2015-04-23
(unknown)
2016-02-22
Contributors
author
  • Taras Shevchenko National University of Kyiv, Volodymyrs'ka 64, 01601 Kyiv, Ukraine
author
  • Institute of Physics of the National Academy of Science of Ukraine, Nauky ave. 46, 03028 Kyiv, Ukraine
author
  • National Pedagogical Dragomanov University, Pirogova 9, 01030 Kyiv, Ukraine
author
  • University of Bergen, Allegaten 55, PO Box 7803, 5020 Bergen, Norway
author
  • Institute for Single Crystals of the National Academy of Science of Ukraine, Lenin ave. 60, ^61001 Kharkiv, Ukraine
References
  • [1] V. Kortov, Radiat. Meas. 42, 576 (2007), doi: 10.1016/j.radmeas.2007.02.067
  • [2] M. Levinstein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters, Vol. 1,2, World Sci., London 1996, p. 1999, doi: 10.1142/2046-vol1
  • [3] A.O. Sofiienko, V.Ya. Degoda, Radiat. Meas. 47, 27 (2012), doi: 10.1016/j.radmeas.2011.08.017
  • [4] K. Katrunov, V. Ryzhikov, V. Gavrilyuk, S. Naydenov, O. Lysetska, V. Litichevskyi, Nucl. Instrum. Methods Phys. Res. A 712, 126 (2013), doi: 10.1016/j.nima.2013.01.065
  • [5] M.S. Brodin, V.Ya. Degoda, A.O. Sofiienko, B.V. Kozhushko, V.T. Vesna, Radiat. Meas. 65, 36 (2014), doi: 10.1016/j.radmeas.2014.04.016
  • [6] J.H. Hubbell Int. J Appl. Radiat. Isot. 33, 1269 (1996), doi: 10.1016/0020-708X(82)90248-4
  • [7] S. Fujiwara, H. Morishita, T. Kotani, K. Matsumoto, T. Shirakawa, J. Cryst. Growth 186, 60 (1998), doi: 10.1016/S0022-0248(97)00441-7
  • [8] Yu.V. Korostelin, V.I. Kozlovsky, A.S. Nasibov, P.V. Shapkin, J. Cryst. Growth 197, 449 (1999), doi: 10.1016/S0022-0248(98)00742-8
  • [9] A. Owens, A. Barnes, R.A. Farley, M. Germain, P.J. Sellin, Nucl. Instrum. Methods Phys. Res. A 695, 303 (2012), doi: 10.1016/j.nima.2011.11.002
  • [10] S.W. Rainer, Nucl. Instrum. Methods Phys. Res. A 582, 824 (2007), doi: 10.1016/j.nima.2007.07.104
  • [11] V.Ya. Degoda, A.O. Sofiienko, Physica B Condens. Matter 426, 24 (2013), doi: 10.1016/j.physb.2013.05.041
  • [12] D.D. Nedeoglo, A.V. Simashkevich, Electrical and Luminescence Properties of Zinc Selenide, Shtiintsa, Kishinev 1984, p. 150 (in Russian)
  • [13] G. Hitier, D. Curie, R. Visocekas, J. Phys. France 42, 479 (1981), doi: 10.1051/jphys:01981004203047900
  • [14] I. Dafinei, M. Fasoli, F. Ferroni, E. Mihóková, F. Orio, S. Pirro, A. Vedda, IEEE Trans. Nucl. Sci. 57, 1470 (2010), doi: 10.1109/TNS.2009.2035914
  • [15] H.L. Oczkowski, Acta Phys. Pol. A 82, 367 (1992), doi: 10.12693/APhysPolA.82.367
  • [16] V.K. Komar, D.P. Nalivaiko, S.V. Sulima, Funct. Mater. 16, 192 (2009)
  • [17] A.F. Gumenjuk, S.Y. Kutovyi, Centr. Europ. J. Phys. 1, 307 (2003), doi: 10.2478/BF02476299
  • [18] K. Karpinska, A. Suchocki, M. Godlewski, D. Hommel, Acta Phys. Pol. A 84, 551 (1993), doi: 10.12693/APhysPolA.84.551
  • [19] E. Tournie, C. Morhain, Appl. Phys. Lett. 68, 1356 (1996), doi: 10.1063/1.116078
  • [20] J.C. Bouley, P. Blanconnier, A. Herman, J. Appl. Phys. 46, 3549 (1975), doi: 10.1063/1.322266
  • [21] Yu.F. Vaksman, Yu.A. Nitsuk, Yu.N. Purtov, P.V. Shapkin, Semiconductors 35, 883 (2001), doi: 10.1134/1.1393021
  • [22] A.A. Artamonova, V.Ya. Degoda, V.E. Rodionov, Proc. SPIE 2113, 98 (1993), doi: 10.1117/12.147856
  • [23] M.A.J. Klik, T. Gregorkiewicz, I.N. Yassievich, V.Yu. Ivanov, M. Godlewski, Phys. Rev. B 72, 125205 (2005), doi: 10.1103/PhysRevB.72.125205
  • [24] V. Ryzhikov, P. Gashin, N. Starzhinskiy, Funct. Mater. 10, 207 (2003)
  • [25] P. Bäume, S. Strauf, J. Gutowski, M. Behringer, D. Hommel, J. Cryst. Growth 184-185, 531 (1998), doi: 10.1016/S0022-0248(98)80110-3
  • [26] P. Bäume, J. Gutowski, D. Wiesmann, R. Heitz, A. Hoffmann, E. Kurtz, D. Hommel, G. Landwehr, Appl. Phys. Lett. 67, 1914 (1995), doi: 10.1063/1.114566
  • [27] N.K. Morozova, I.A. Karetnikov, E.M. Gavrishchuk, Inorg. Mater. 35, 917 (1999) (in Russian)
  • [28] F.J. Bryant, P.S. Manning, J. Phys. 5, 1914 (1972)
  • [29] N.K. Morozova, V.A. Kuznetsov, V.D. Ryzhykov, Zinc Selenide. Production and Optical Properties, Nauka, Moscow 1992, p. 93 (in Russian)
  • [30] N.K. Morozova, I.A. Karetnikov, V.V. Blinov, E.M. Gavrishchuk, Semiconductors 35, 512 (2001), doi: 10.1134/1.1371612
  • [31] N.K. Morozova, I.A. Karetnikov, V.V. Blinov, E.M. Gavrishchuk, Semiconductors 35, 24 (2001), doi: 10.1134/1.1340285
  • [32] A.F. Gumenjuk, M. Grebenovych, S.J. Kutovyi, Funct. Mater. 9, 314 (2002)
  • [33] G.P. Blinnikov, V.M. Holonchka, A.A. Gumenjuk, Opt. Spectrosc. 69, 1054 (1990)
  • [34] I.S. Gorban, A.F. Gumenjuk, S.Y. Kutovyi, Ukr. J. Phys. 40, 73 (1995)
  • [35] A.F. Gumenjuk, O.B. Ochrimenko, S.Y. Kutovyi, Ukr. J. Phys. 42, 870 (1997)
  • [36] I.S. Gorban, A.F. Gumenjuk, V.Ya. Degoda, S.Y. Kutovyi, Opt. Spectrosc. 75, 47 (1993) (in Russian)
  • [37] A.F. Gumenjuk, S.Y. Kutovyi, Ukr. J. Phys. 50, 1125 (2005)
  • [38] A.F. Gumenjuk, S.Y. Kutovyi, O. Stanovyy, Visn. KNU Shevchenko, Ser. Fiz. 10-11, 32 (2010) (in Ukrainian)
  • [39] A.F. Gumenjuk, S.Y. Kutovyi, V.G. Pashchenko, O.P. Stanovyi, Ukr. J. Phys. 54, 999 (2009)
  • [40] U.A. Vinogradova, B.N. Mavrin, L.K. Voopjanov, J. Exp. Theor. Phys. 126/4, 866 (2004) (in Russian), doi: 10.1134/1.1826166
  • [41] S. Anand, P. Verma, K.P. Jain, S.C. Abbi, Physica B Condens. Matter 226, 331 (1996), doi: 10.1016/0921-4526(96)84974-X
  • [42] K. Nakano, P.J. Boyce, J.J. Davies, D. Wolverson, J. Cryst. Growth 117, 331 (1992), doi: 10.1016/0022-0248(92)90770-J
  • [43] A.M. Gurvich, X-Ray Phosphors and X-Ray Screens, Atomizdat, Moscow 1976, p. 152 (in Russian)
  • [44] A.M. Gurvich, Introduction to the Physical Chemistry of Crystal Phosphors, Vysshaya Shkola, Moscow 1982, p. 376 (in Russian)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n307kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.