Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 289-292

Article title

Microwave Field Strength Computing for the Resonator Designs and Filters

Content

Title variants

Languages of publication

EN

Abstracts

EN
Recent development of microwave pulse generators, which are now capable of delivering very short and very intensive pulses requires properly generalized classical breakdown theory. On the other hand, the trend to design microwave devices as small and compact as possible, leads to a concern about the concomitant breakdown strength of the construction, involving more complicated geometries, such as in microwave resonators and filters. In this paper, several aspects of microwave breakdown field strength in commercially available resonator designs and filters are presented and analyzed. The numerical predictions based on the Slater theorem are compared with the analytical results and predictions of the fluid approach, demonstrating very good agreement.

Keywords

EN

Contributors

  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Serbia
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Serbia
author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Serbia

References

  • [1] M.J. Druyvestayn, F.M. Penning, Rev. Mod. Phys. 12, 87 (1940), doi: 10.1103/RevModPhys.12.87
  • [2] D.Q. Posin, Phys. Rev. 73, 496 (1948), doi: 10.1103/PhysRev.73.496
  • [3] S. Krasik, D. Alpert, A.O. McCoubreyn, Phys. Rev. 76, 722 (1949), doi: 10.1103/PhysRev.76.722
  • [4] F.C. Fehsenfeld, K.M. Evenson, H.P. Broida, Rev. Sci. Instrum. 36, 294 (1965), doi: 10.1063/1.1719557
  • [5] M. Radmilović-Radjenović, B. Radjenović, Central Europ. J. Phys. 9, 265 (2011), doi: 10.2478/s11534-010-0096-7
  • [6] B. Radjenović, M. Milanović, M. Radmilović-Radjenović, Phys. Scr. T 149, 014026 (2012), doi: 10.1088/0031-8949/2012/T149/014026
  • [7] W.P. Allis, S.C. Brown, Phys. Rev. 87, 419 (1952), doi: 10.1103/PhysRev.87.419
  • [8] H.J. Oskam, J. Appl. Phys. 27, 848 (1956), doi: 10.1063/1.1722501
  • [9] A.D. MacDonald, D.U. Gaskell, H.N. Gitterman, Phys. Rev. 130, 1841 (1963), doi: 10.1103/PhysRev.130.1841
  • [10] F. Werner, D. Korzec, J. Engemann, Plasma Sources Sci. Technol. 3, 473 (1994), doi: 10.1088/0963-0252/3/4/004
  • [11] T. Fleisch, Y. Kabouzi, J. Pollack, E. Castaños-Martínez, H. Nowakowska, M. Moisan, Plasma Sourc. Sci. Technol. 16, 173 (2007), doi: 10.1088/0963-0252/16/1/022
  • [12] D. Anderson, U. Jordan, M. Lisak, T. Olsson, M. Ahlander, IEEE Trans. Microwave Theory Techn. 47, 2547 (1999)
  • [13] S.K. Remillard, A. Hardaway, B. Jork, J. Gilliland, J. Gibs, Progr. Electromagn. Res. B 15, 175 (2009), doi: 10.2528/PIERB09041706
  • [14] M. Radmilovic-Radjenovic, J.K. Lee, F. Iza and G.Y. Park, J. Phys. D: Appl. Phys 38, 950 (2005), doi: 10.1088/0022-3727/38/6/027
  • [15] R. Tomala, U. Jordan, D. Anderson, M. Lisak, Contr. Plasma Phys. 46, 287 (2006), doi: 10.1002/ctpp.200610005

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n304kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.