Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 3 | 273-277
Article title

Construction of Three-Qubit Kochen-Specker Sets

Title variants
Languages of publication
Contextuality is one of the fundamental deviations of quantum mechanics from classical physics. The Kochen-Specker theorem shows that non-contextual classical physics with hidden variables is inconsistent with the predictions of quantum mechanics. Parity proof is one of the many different approaches applied to prove Kochen-Specker theorem for quantum system with different dimensionality. This method of proof requires Kochen-Specker sets that were composed of an odd number of bases and an even number of projectors. In most of the cases, the number of Kochen-Specker sets produced is large and its production is generally aided by computer calculation. However, manual generation of the Kochen-Specker sets are also reported previously for qutrit and two-qubit systems. We put forward the first and surprisingly simple method to generate manually Kochen-Specker sets, with respect to the Mermin pentagram, that can be used for the parity proof of the Kochen-Specker theorem in a state space of eight-dimensional three-qubit system.
  • Faculty of Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
  • [1] K. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967), doi: 10.1512/iumj.1968.17.17004
  • [2] A. Peres, J. Phys. A Math. Gen. 24, L175 (1991), doi: 10.1088/0305-4470/24/4/003
  • [3] J.H. Conway, S. Kochen, reported by A. Peres, Quantum Theory: Concepts and Method, Kluwer, Dordrecht 1993, p. 114
  • [4] A. Cabello, J.M. Estebaranz, G. García-Alcaine, Phys. Lett. A 212, 183 (1996), doi: 10.1016/0375-9601(96)00134-X
  • [5] M. Kernaghan, A. Peres, Phys. Lett. A 198, 1 (1995), doi: 10.1016/0375-9601(95)00012-R
  • [6] N.D. Mermin, Rev. Mod. Phys. 65, 803 (1993), doi: 10.1103/RevModPhys.65.803
  • [7] D.A. Meyer, Phys. Rev. Lett. 83, 3751 (1999), doi: 10.1103/PhysRevLett.83.3751
  • [8] A. Kent, Phys. Rev. Lett. 83, 3755 (1999), doi: 10.1103/PhysRevLett.83.3755
  • [9] A. Cabello, Phys. Rev. Lett. 101, 210401 (2008), doi: 10.1103/PhysRevLett.101.210401
  • [10] G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, Nature 460, 494 (2009), doi: 10.1038/nature08172
  • [11] H. Bartosik, J. Klepp, C. Schmitzer, S. Sponar, A. Cabello, H. Rauch, Y. Hasegawa, Phys. Rev. Lett. 103, 040403 (2009), doi: 10.1103/PhysRevLett.103.040403
  • [12] E. Amselem, M. Radmark, M. Bourennane, A. Cabello, Phys. Rev. Lett. 103, 160405 (2009), doi: 10.1103/PhysRevLett.103.160405
  • [13] G. Borges, M. Carvalho, P.L. de Assis, J. Ferraz, M. Araújo, A. Cabello, M. Terra Cunha, S. Pádua, Phys. Rev. A 89, 052106 (2014), doi: 10.1103/PhysRevA.89.052106
  • [14] O. Moussa, C.A. Ryan, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 104, 160501 (2010), doi: 10.1103/PhysRevLett.104.160501
  • [15] M. Waegell, P.K. Aravind, Found. Phys. 44, 1085 (2014), doi: 10.1007/s10701-014-9830-0
  • [16] M. Waegell, P.K. Aravind, J. Phys. A Math. Theor. 45, 405301 (2012), doi: 10.1088/1751-8113/45/40/405301
  • [17] J. Bub, Found. Phys. 26, 787 (1996), doi: 10.1007/BF02058633
  • [18] M. Waegell, P.K. Aravind, Found. Phys. 41, 1786 (2011), doi: 10.1007/s10701-011-9578-8
  • [19] M. Waegell, P.K. Aravind, J. Phys. A Math. Theor. 44, 505303 (2011), doi: 10.1088/1751-8113/44/50/505303
  • [20] G. Gañas, S. Etcheverry, E.S. Gómez, C. Saavedra, G.B. Xavier, G. Lima, A. Cabello, Phys. Rev. A 90, 012119 (2014), doi: 10.1103/PhysRevA.90.012119
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.