Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1a | A-135-A-137
Article title

Influence of Iron Nanowires Oxidation on Their Semiconducting Properties

Title variants
Languages of publication
The main aim of this work was to study the impact of thermal annealing on the structure of iron oxide shell covering iron nanowires in relation to their semiconducting properties. Studied nanomaterial has been produced via a simple chemical reduction in an external magnetic field and then it has been thermally-treated at 400°C, 600°C and also 800°C in a slightly oxidizing argon atmosphere. Annealed iron nanowires have been characterized by means of the Raman spectroscopy and photoluminescence in order to study the structure of iron oxide shell and its influence on semiconducting properties of the whole nanostructure. According to obtained experimental results, the composition of iron oxide shell covering the studied nanomaterial is changing with annealing temperature. The thermal treatment at 400°C leads to oxidation of iron coming from the core of nanomaterial and formation of a mixture of Fe₃O₄ and α -Fe₂O₃ on the surfaces of nanowires, while annealing at higher temperatures results in further oxidation of iron as well as the phase transformation of previously created Fe₃O₄ into the most thermodynamically stable form of iron oxide at ambient conditions - α -Fe₂O₃. This oxide has a major impact on the semiconducting properties of studied nanomaterial. Thereby, the measurements of photoluminescence enabled to estimate the bandgap of bulk and surface layer at about 1.8 eV and 2.1 eV, respectively.
Physical description
  • [1] L. Yuan, R.S. Cai, J.I. Jang, W.H. Zhu, C. Wang, Y.Q. Wang, G.W. Zhou, Nanoscale 5, 7581 (2013), doi: 10.1039/c3nr01669b
  • [2] A. Cabot, V.F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M.A. Marcus, S.M. Hughes, A.P. Alivisatos, J. Am. Chem. Soc. 129, 10358 (2007), doi: 10.1021/ja072574a
  • [3] M.L. Zhong, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, Acta Mater. 58, 5926 (2010), doi: 10.1016/j.actamat.2010.07.008
  • [4] Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003), doi: 10.1002/adfm.200390013
  • [5] L.Y. Zhang, D.S. Xue, X.F. Xu, A.B. Gui, C.X. Gao, J. Phys. Condens. Matter 16, 4541 (2004), doi: 10.1088/0953-8984/16/25/011
  • [6] W.S. Lin, Z.J. Jian, H.M. Lin, L.C. Lai, W.A. Chiou, Y.K. Hwu, S.H. Wu, W.C. Chen, Y.D. Yao, J. Chin. Chem. Soc. 60, 85 (2013), doi: 10.1002/jccs.201200263
  • [7] M. Krajewski, K. Brzozka, B. Gorka, W.S. Lin, H.M. Lin, T. Szumiata, M. Gawronski, D. Wasik, Nukleonika 60, 87 (2015), doi: 10.1515/nuka-2015-0004
  • [8] M. Krajewski, W.S. Lin, H.M. Lin, M. Tokarczyk, S. Lewinska, N. Nedelko, A. Slawska-Waniewska, G. Kowalski, J. Borysiuk, D. Wasik, Phys. Status Solidi A Appl. Mater. 212, 862 (2015), doi: 10.1002/pssa.201431843
  • [9] M. Krajewski, W.S. Lin, H.M. Lin, K. Brzozka, S. Lewinska, N. Nedelko, A. Slawska-Waniewska, J. Borysiuk, D. Wasik, Beilstein J. Nanotechnol. 6, 1652 (2015), doi: 10.3762/bjnano.6.167
  • [10] B.S. Zou, V. Volkov, J. Phys. Chem. Solids 61, 757 (2000), doi: 10.1016/S0022-3697(99)00266-8
  • [11] A.M. Jubb, H.C. Allen, ACS Appl. Mater. Interfaces 2, 2804 (2010), doi: 10.1021/am1004943
  • [12] S.H. Shen, C.X. Kronawitter, J.G. Jiang, S.S. Mao, L.J. Guo, Nano Res. 5, 327 (2012), doi: 10.1007/s12274-012-0213-6
  • [13] Y. Zhang, W.J. Liu, C.F. Wu, T. Gong, J.Q. Wei, M.X. Ma, K.L. Wang, M.L. Zhong, D.H. Wu, Mater. Res. Bull. 43, 3490 (2008), doi: 10.1016/j.materresbull.2008.01.025
  • [14] Q. Han, Z.H. Liu, Y.Y. Xu, Z.Y. Chen, T.M. Wang, H. Zhang, J. Phys. Chem. C 111, 5034 (2007), doi: 10.1021/jp067837m
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.