EN
Plasmon-enhanced photoluminescence of silicon nanocrystals embedded in silicon-rich oxinitride thin film is calculated using finite-difference time-domain simulations. Emitters are represented as point-like dipoles and the photoluminescence enhancement is calculated depending on the emitter's position and polarization with respect to the plasmonic metal nanoparticle placed on top of the layer. We show that the photoluminescence enhancement is dominated by the excitation enhancement even for tuning the metal nanoparticle size to the emission wavelength.