Journal
Article title
Title variants
Languages of publication
Abstracts
Plasmon-enhanced photoluminescence of silicon nanocrystals embedded in silicon-rich oxinitride thin film is calculated using finite-difference time-domain simulations. Emitters are represented as point-like dipoles and the photoluminescence enhancement is calculated depending on the emitter's position and polarization with respect to the plasmonic metal nanoparticle placed on top of the layer. We show that the photoluminescence enhancement is dominated by the excitation enhancement even for tuning the metal nanoparticle size to the emission wavelength.
Discipline
- 78.55.Qr: Amorphous materials; glasses and other disordered solids
- 42.50.Nn: Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems
- 73.20.Mf: Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)(for collective excitations in quantum Hall effects, see 73.43.Lp)
- 78.20.Bh: Theory, models, and numerical simulation
Journal
Year
Volume
Issue
Pages
A-70-A-72
Physical description
Dates
published
2016-01
Contributors
author
- Central European Institute of Technology, Brno University of Technology,, Technická 10, CZ 616 00 Brno, Czech Republic
- Institute of Physics, Brno University of Technology, Technická 2, CZ 616 69 Brno, Czech Republic
author
- Central European Institute of Technology, Brno University of Technology,, Technická 10, CZ 616 00 Brno, Czech Republic
author
- Institute of Physics, Brno University of Technology, Technická 2, CZ 616 69 Brno, Czech Republic
References
- [1] E.M. Purcell, Phys. Rev. 69, 681 (1946), doi: 10.1103/PhysRev.69.674
- [2] H. Atwater, A. Polman, Nature Mater. 9, 205 (2010), doi: 10.1038/nmat2629
- [3] C.A. Orozco, J.G. Liu, M.W. Knight, Y. Wang, J.K. Day, P. Nordlander, N.J. Halas, Nano Lett. 14, 2926 (2014), doi: 10.1021/nl501027j
- [4] L. Novotny, P. Bharadwaj, Opt. Expr. 15, 14266 (2007), doi: 10.1364/OE.15.014266
- [5] A.M. Kern, O.J.F. Martin, Nano Lett. 11, 482 (2011), doi: 10.1021/nl1032588
- [6] H. Mertens, A.F. Koenderink, A. Polman, Phys. Rev. B 76, 115123 (2007), doi: 10.1103/PhysRevB.76.115123
- [7] S. Kohli, J.A. Theil, P.C. Dippo, K.M. Jones, M.M. Al-Jassim, R.K. Ahrenkiel, C.D. Rithner, P.K. Dorhout, Nanotechnology 15, 1831 (2004), doi: 10.1088/0957-4484/15/12/024
- [8] J. Goffard, D. Gerard, P. Miska, A.L. Baudrion, R. Deturche, J. Plain, Sci. Rep. 3, 2672 (2013), doi: 10.1038/srep02672
- [9] I. Pelant, Phys. Status Solidi A 208, 625 (2010), doi: 10.1002/pssa.201000374
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n1a14kz