Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1a | A-26-A-29

Article title

Dynamical and Tuneable Modulation of the Tamm Plasmon/Exciton-Polariton Hybrid States Using Surface Acoustic Waves

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we discuss theoretically the formation of the Tamm plasmon/exciton-polariton hybrid states in an (Al,Ga)As microcavity and their modulation by surface acoustic waves. The modulation of the Tamm plasmon/exciton-polariton states origins in the change of the excitonic band gap energy and the thickness change of the sample structure layers due to the induced strain fields by surface acoustic waves. The frequency f_{SAW} of the acoustic modulation of the Tamm plasmon/exciton-polariton states is limited by the thickness of the upper distributed Bragg reflector. For the Tamm plasmon/exciton-polariton states in Al_xGa_{1-x}As/GaAs structures f_{SAW} is in the range of 370 MHz while f_{SAW} in GHz range is possible for the parametric Tamm plasmon/exciton-polariton states. In both cases, the acoustic modulation is several meV for typical acoustic power levels.

Keywords

EN

Contributors

author
  • Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany
  • Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany
  • Instituto de Investigación en Comunicación Óptica-UASLP, 78000 San Luis, Mexico
author
  • Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany

References

  • [1] L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, New York 2006, doi: 10.1017/CBO9780511813535
  • [2] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Nature (London) 443, 409 (2006), doi: 10.1038/nature05131
  • [3] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Nature Phys. 5, 805 (2009), doi: 10.1038/nphys1364
  • [4] K.G. Lagoudaki, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, B. Deveaud-Plédran, Nature Phys. 4, 706 (2008), doi: 10.1038/nphys1051
  • [5] S. Maier, Plasmonics: Fundamentals and Applications, Springer, New York 2007, doi: 10.1007/0-387-37825-1
  • [6] T.C.H. Liew, A.V. Kavokin, T. Ostatnický, M. Kaliteevski, I.A. Shelykh, R.A. Abram, Phys. Rev. B 82, 033302 (2010), doi: 10.1103/PhysRevB.82.033302
  • [7] A. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, Oxford University Press, New York 2007, doi: 10.1093/acprof:oso/9780199228942.001.0001
  • [8] C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Nature (London) 450, 529 (2007), doi: 10.1038/nature06334
  • [9] D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lemaître, E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech, J. Bloch, Nature Commun. 4, 1749 (2013), doi: 10.1038/ncomms2760
  • [10] D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, Nature Commun. 4, 1778 (2013), doi: 10.1038/ncomms2734
  • [11] I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014), doi: 10.1103/RevModPhys.86.153
  • [12] Xue Ben, H.S. Park, Appl. Phys. Lett. 102, 041909 (2013), doi: 10.1063/1.4790293
  • [13] E.A. Cerda-Méndez, D.N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P.V. Santos, D. Sarkar, M.S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010), doi: 10.1103/PhysRevLett.105.116402
  • [14] E.A. Cerda-Méndez, D. Sarkar, D.N. Krizhanovskii, S.S. Gavrilov, K. Biermann, M.S. Skolnick, P.V. Santos, Phys. Rev. Lett. 111, 146401 (2013), doi: 10.1103/PhysRevLett.111.146401
  • [15] M. Kaliteevski, S. Brand, R.A. Abram, I. Iorsh, A.V. Kavokin, I.A. Shelykh, Appl. Phys. Lett. 95, 251108 (2009), doi: 10.1063/1.3266841
  • [16] M. Kaliteevski, I. Iorsh, S. Brand, R.A. Abram, J.M. Chamberlain, A.V. Kavokin, I.A. Shelykh, Phys. Rev. B 76, 165415 (2007), doi: 10.1103/PhysRevB.76.165415
  • [17] S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties, World Sci., 1994, doi: 10.1142/2508
  • [18] P. Yu, M. Cardona, Fundamentals of Semiconductors, Springer, Berlin 2010, doi: 10.1007/978-3-642-00710-1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n1a02kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.