Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1 | 121-124

Article title

Synthesis of PbTiO₃ Thin Films by Annealing Multilayer Oxide Structures in Vacuum

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article presents investigation of syntheses of perovskite PbTiO₃ thin films by using reactive magnetron layer-by-layer deposition on Si (100) substrate and post-annealing in air and vacuum (p=5×10^{-3} Pa). The film stoichiometry was accurately controlled by the deposition of individual layers with the required ( ≈1 nm) thickness, using the substrate periodic moving over targets. Deposited thin films were annealed in air and in vacuum at 670°C and 770°C for 1 h, respectively. The morphological, structural, and chemical properties of thin films deposited at 300°C substrate temperature and post-annealed thin films using either conventional annealing and thermal annealing in vacuum at different temperatures were investigated and compared between. X-ray diffraction measurements of thin films annealed in air show formed crystalline perovskite PbTiO₃ phase with tetragonality c/a=1.047. The crystallite size of oxidized films depends on the substrate temperature. The structure of post annealed in vacuum thin films strongly depends on Pb/Ti atomic ratio. It was observed that the best structure and morphology forms when atomic ratio of Pb/Ti was 0.80. Pseudocubic phase of lead titanate forms with sufficiently low tetragonality at 670°C temperature.

Keywords

EN

Contributors

author
  • Departament of Physics, Kaunas University of Technology, Student ku 50, LT-51368, Kaunas, Lithuania Department of Technology, Kaunas University of Technology, Nemuno 33, LT-37164 Panevėr v zys, Lithuania
author
  • Departament of Physics, Kaunas University of Technology, Student ku 50, LT-51368, Kaunas, Lithuania Department of Technology, Kaunas University of Technology, Nemuno 33, LT-37164 Panevėr v zys, Lithuania

References

  • [1] G. Shirane, S. Hoshino, K. Suzuki, Phys. Rev. 80, 1105 (1950), doi: 10.1103/PhysRev.80.1105
  • [2] H. Zhao, J. Wang, C. Sun, J. Chen, A. Ablat, E. Muhemmed, K. Ibrahim, S. Qiao, L. Qiao, X. Xing, Thin Solid Films 542, 155 (2013), doi: 10.1016/j.tsf.2013.07.007
  • [3] L. Fan, J. Chen, Q. Wang, J. Deng, R. Yu, X. Xing, Ceram. Int. 40, 7723 (2014), doi: 10.1016/j.ceramint.2013.12.113
  • [4] D. Szwagierczak, J. Kulawik, J. Eur. Ceram. Soc. 24, 1979 (2004), doi: 10.1016/S0955-2219(03)00358-3
  • [5] S. Cochran, in: Ultrasonic Transducers, Ed. K. Nakamura, Woodhead Publ., Oxford U.K. 2012, p. 3, doi: 10.1533/9780857096302.1.3
  • [6] J. Zhao, L. Li, Z. Gui, Mater. Sci. Eng. B 94, 202 (2002), doi: 10.1016/S0921-5107(02)00080-6
  • [7] L.L. Sun, O.K. Tan, W.G. Liu, W.G. Zhu, X. Yao, Infrared Phys. Technol. 44, 177 (2003), doi: 10.1016/S1350-4495(02)00189-5
  • [8] B. Fang, K. Qian, N. Yuan, J. Ding, X. Zhao, H. Luo, Mater. Lett. 84, 91 (2012), doi: 10.1016/j.matlet.2012.06.061
  • [9] F. Bensebaa, in: Interface Science and Technology, Ed. B. Farid, Elsevier, 2013, Ch. 7, p. 429, doi: 10.1016/B978-0-12-369550-5.00007-0
  • [10] K. Kim, Y.J. Song, Microelectron. Reliab. 43, 385 (2003), doi: 10.1016/S0026-2714(02)00285-8
  • [11] H. Takasu, Microelectron. Eng. 59, 237 (2001), doi: 10.1016/S0167-9317(01)00630-X
  • [12] B. Li, X. Zhang, J.B. Wang, X.L. Zhong, F. Wang, Y.C. Zhou, Mech. Res. Commun. 55, 40 (2014), doi: 10.1016/j.mechrescom.2013.10.016
  • [13] N.A. Basit, H.K. Kim, J. Blachere, Thin Solid Films 302, 155 (1997), doi: 10.1016/S0040-6090(97)00004-7
  • [14] F.M. Pontes, J.H.G. Rangel, E.R. Leite, E. Longo, J.A. Varela, E.B. Araujo, J.A. Eiras, Thin Solid Films 366, 232 (2000), doi: 10.1016/S0040-6090(00)00855-5
  • [15] J. Harjuoja, A. Kosola, M. Putkonen, N. Niinisto, Thin Solid Films 496, 346 (2006), doi: 10.1016/j.tsf.2005.09.026
  • [16] V. Stankus, J. Dudonis, Mater. Sci. Eng. B 109, 178 (2004), doi: 10.1016/j.mseb.2003.10.047
  • [17] R. Thapliyal, P. Schwaller, M. Amberg, F.J. Haug, G. Fortunato, D. Hegemann, H.J. Hug, A. Fischer, Surf. Coat. Technol. 200, 1051 (2005), doi: 10.1016/j.surfcoat.2005.03.014
  • [18] F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publ., New York 1993 p. 402
  • [19] W.-B. Cai,Y.-Q. Wan, H.-T. Liu, W.-F. Zhou, J. Electroanal. Chem. 387, 95 (1995), doi: 10.1016/0022-0728(94)03866-2
  • [20] Q. Zhao, Z.X. Fan, Z.S. Tang, X.J. Meng, J.L. Song, G.S. Wang, J.H. Chu, Surf. Coat. Technol. 160, 173 (2002), doi: 10.1016/S0257-8972(02)00409-7
  • [21] S. de Lazaro, E. Longo, J.R. Sambrano, A. Beltran, Surf. Sci. 552, 149 (2004), doi: 10.1016/j.susc.2004.01.041
  • [22] S. Wongsaenmai, X. Tan, S. Ananta, R. Yimnirum, J. Alloys Comp. 454, 331 (2008), doi: 10.1016/j.jallcom.2006.12.053
  • [23] G. Yu, X. Dong, G. Wang, F. Cao, X. Chen, J. Alloys Comp. 500, 56 (2010), doi: 10.1016/j.jallcom.2010.03.194

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n124kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.