EN
This article presents investigation of syntheses of perovskite PbTiO₃ thin films by using reactive magnetron layer-by-layer deposition on Si (100) substrate and post-annealing in air and vacuum (p=5×10^{-3} Pa). The film stoichiometry was accurately controlled by the deposition of individual layers with the required ( ≈1 nm) thickness, using the substrate periodic moving over targets. Deposited thin films were annealed in air and in vacuum at 670°C and 770°C for 1 h, respectively. The morphological, structural, and chemical properties of thin films deposited at 300°C substrate temperature and post-annealed thin films using either conventional annealing and thermal annealing in vacuum at different temperatures were investigated and compared between. X-ray diffraction measurements of thin films annealed in air show formed crystalline perovskite PbTiO₃ phase with tetragonality c/a=1.047. The crystallite size of oxidized films depends on the substrate temperature. The structure of post annealed in vacuum thin films strongly depends on Pb/Ti atomic ratio. It was observed that the best structure and morphology forms when atomic ratio of Pb/Ti was 0.80. Pseudocubic phase of lead titanate forms with sufficiently low tetragonality at 670°C temperature.