PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1 | 43-48
Article title

Infrared Active Phonons and Optical Band Gap in Multiferroic GdMnO₃ Studied by Infrared and UV-Visible Spectroscopy

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Optical properties of multiferroic GdMnO₃ synthesized by sol-gel method have been investigated by measuring the infrared reflectivity and UV-visible absorption spectra. The infrared reflectivity spectrum of polycrystalline GdMnO₃ in the frequency range 30-7500 cm^{-1} at room temperature contains several phonon modes. The resonant frequency of observed infrared active phonon modes is found comparable with theoretically predicted results. Mean Born effective charges are calculated and discussed in view of the origin of ferroelectricity in GdMnO₃. Three strong absorption peaks observed in the UV-visible spectrum are attributed to the Mn (3d)-electron transitions. The optical band gap ≈1.2 eV is estimated from UV-visible absorption spectrum using Tauc's relation. GdMnO₃ seems to behave like an indirect gap semiconductor.
Keywords
Year
Volume
129
Issue
1
Pages
43-48
Physical description
Dates
published
2016-01
received
2014-11-07
(unknown)
2015-12-09
References
  • [1] Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007), doi: 10.1016/j.jmmm.2006.11.198
  • [2] N.A. Spaldin, M. Fiebig Science 309, 391 (2005), doi: 10.1126/science.1113357
  • [3] N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004), doi: 10.1038/nature02572
  • [4] T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004), doi: 10.1103/PhysRevLett.92.257201
  • [5] A.M. Shuvaev, A.A. Mukhin, A. Pimenov, J. Phys. Condens. Matter 23, 113201 (2011), doi: 10.1088/0953-8984/23/11/113201
  • [6] J. Baier, D. Meier, K. Berggold, J. Hermberger, A. Balbashov, J.A. Mydosh, T. Lorenz, Phys. Rev. B 73, 100402(R) (2006), doi: 10.1103/PhysRevB.73.100402
  • [7] N.A. Hill, J. Phys. Chem. B 104, 6694 (2000), doi: 10.1021/jp000114x
  • [8] L. Lin, L. Li, Z.B. Yan, Y.M. Tao, S. Dong, J.M. Liu, Appl. Phys. A 112, 947 (2013), doi: 10.1007/s00339-012-7453-x
  • [9] X. Zang, Y.G. Zhao, Y.F. Cui, L.D. Ye, D.Y. Zhao, P.S. Li, J.W. Wang, M.H. Zhu, H.Y. Zhang, G.H. Rao, Appl. Phys. Lett. 104, 062903 (2014), doi: 10.1063/1.4865376
  • [10] J.F. Scott, Phys. Rev. B 4, 1360 (1971), doi: 10.1103/PhysRevB.4.1360
  • [11] X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997), doi: 10.1103/PhysRevB.55.10355
  • [12] S. Jandl, S. Mansouri, J. Vermette, A.A. Mukhin, V.Yu. Ivanov, A. Balbashov, M. Orlita, J. Phys. Condens. Matter 25, 475403 (2013), doi: 10.1088/0953-8984/25/47/475403
  • [13] A. Pimenov, T. Rudolf, F. Mayr, A. Loidl, A.A. Mukhain, A.M. Babashov, Phys. Rev. B 74, 100403(R) (2006), doi: 10.1103/PhysRevB.74.100403
  • [14] A. Pimenov, A.A. Mukhin, V.Yu. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nature Phys. 2, 97 (2006), doi: 10.1038/nphys212
  • [15] W.S. Ferreira, J.A. Moreira, A. Almeida, M.R.C. Haves, J.P. Araújo, J.B. Oliveira, J.M. Machado Da Silva, M.A. Sá, T.M. Mendonça, P. Simeão Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonça, Phys. Rev. B 79, 054303 (2009), doi: 10.1103/PhysRevB.79.054303
  • [16] N.E. Massa, L. del Campo, D.D.S. Meneses, P. Echegut, M.J. Martínez-Lope, J.A. Alonso, J. Phys. Condens. Matter 25, 395601 (2013), doi: 10.1088/0953-8984/25/39/395601
  • [17] I. Fedorov, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, S.W. Cheong, S. Koval, P. Migoni, Phys. Rev. B 60, 11875 (1999), doi: 10.1103/PhysRevB.60.11875
  • [18] R. Ubic, G. Subodha, J. Alloys Comp. 488, 374 (2010), doi: 10.1016/j.jallcom.2009.08.139
  • [19] M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998), doi: 10.1103/PhysRevB.57.2872
  • [20] M.D. Fontana, G. Metrat, J.L. Servoin, F. Gervais, J. Phys. C Solid State Phys. 17, 483 (1984), doi: 0022-3719/17/3/020
  • [21] I.S. Smirnova, Physica B 262, 247 (1999), doi: 10.1016/S0921-4526(98)01154-5
  • [22] F. Gervais, Solid State Commun. 18, 191 (1976), doi: 10.1103/PhysRevB.72.125103
  • [23] J. Vermette, S. Jandl, M. Orlita, M.M. Gospodinov, Phys. Rev. B 85, 134445 (2012), doi: 10.1103/PhysRevB.85.134445
  • [24] A.B. Souchkov, J.R. Simpson, M. Quijada, H. Ishibashi, N. Hur, J.S. Ahn, S.W. Cheong, A.J. Millis, H.D. Drew, Phys. Rev. Lett. 91, 027203 (2003), doi: 10.1103/PhysRevLett.91.027203
  • [25] M. Zaghrioui, V. Ta Phuoc, R.A. Souza, F. Gervais, Phys. Rev. B 78, 184305 (2008), doi: 10.1103/PhysRevB.78.184305
  • [26] P. Ghosez, P. Michenaud, J.X. Gonze, Phys. Rev. B 58, 6224 (1998), doi: 10.1103/PhysRevB.58.6224
  • [27] F. Detraux, P. Ghosez, X. Gonze, Phys. Rev. B 56, 983 (1997), doi: 10.1103/PhysRevB.56.983
  • [28] P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931) http://ci.nii.ac.jp/naid/10008164867/en/
  • [29] M.W. Kim, J.H. Jung, K.H. Kim, H.J. Lee, J. Yu, T.W. Noh, Y. Moritomo, Phys. Rev. Lett. 89, 016403 (2002), doi: 10.1103/PhysRevLett.89.016403
  • [30] X.L. Wang, D. Li, T.Y. Cui, P. Kharel, W. Liu, Z.D. Zhang, J. Appl. Phys. 107, 09B510 (2010), doi: 10.1063/1.3358007
  • [31] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 37, 627 (1966), doi: 10.1002/pssb.19660150224
  • [32] S.F. Wang, H. Yang, T. Xian, X.Q. Liu, Catal. Commun. 12, 625 (2011), doi: 10.1016/j.catcom.2010.11.023
  • [33] H. Yang, S.F. Wang, T. Xian, Z.Q. Wei, W.J. Feng, Mater. Lett. 65, 884 (2011), doi: 10.1016/j.matlet.2010.11.068
  • [34] P. Negi, G. Dixit, H.M. Agrawal, R.C. Srivastava, J. Supercond. Nov. Magn. 26, 1611 (2013), doi: 10.1007/s10948-012-1870-0
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n109kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.