Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1 | 35-39

Article title

Size Effects in Antiferromagnetic NiO Nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
X-ray and neutron diffraction as well as magnetometric methods were used in order to investigate crystal and magnetic structure together with magnetic properties of nickel oxide NiO obtained from thermal decomposition of Ni(OH)₂. It has been found that crystal unit cell volume and crystal unit cell deformation parameter decrease with increasing decomposition temperature T_{d} while grain size increases. The results of magnetization, magnetic susceptibility and neutron diffraction measurements reveal a formation of antiferromagnetic order with uncompensated magnetic moment below the Néel temperature. Magnetization together with coercive field decreases with increasing T_{d}. The neutron diffractogram of sample obtained at 240°C indicates broadening of both the peaks of nuclear and magnetic origin. The magnetic ordering may be described by a propagation vector k=[½,½,½].

Keywords

Contributors

author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner Platz 1, D-14 109 Berlin, Germany
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland

References

  • [1] J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997), doi: 10.1002/9780470141571.ch4
  • [2] M.F. Trombe, J. Phys. Radium 12, 170 (1951), doi: 10.1051/jphysrad:01951001203017000
  • [3] C.G. Shull, W.A. Strauser, E.O. Wollan, Phys. Rev. 83, 333 (1951), doi: 10.1103/PhysRev.83.333
  • [4] W.L. Roth, Phys. Rev. 110, 1333 (1958), doi: 10.1103/PhysRev.110.1333
  • [4a] W.L. Roth, Phys. Rev. 111, 772 (1958), doi: 10.1103/PhysRev.111.772
  • [5] W.L. Roth, G.A. Slack, J. Appl. Phys. 31, S525 (1960), doi: 10.1063/1.1984744
  • [6] J.T. Richardson, W.O. Milligan, Phys. Rev. 102, 1289 (1956), doi: 10.1103/PhysRev.102.1289
  • [7] E. Winkler, R.D. Zysler, M. Vasquez Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, K.N. Trohidou, Nanotechnology 19,185702 (2008), doi: 10.1088/0957-4484/19/18/185702
  • [7a] E. Winkler, R.D. Zysler, M. Vasquez Mansilla, D. Fiorani, Phys. Rev. B 72, 132409 (2005), doi: 10.1103/PhysRevB.72.132409
  • [8] S.D. Tiwari, K.P. Rajeev, Phys. Rev. B 72, 104433 (2005), doi: 10.1103/PhysRevB.72.104433
  • [9] J. Rodriguez-Carvajal, Physica B 192, 55 (1993), doi: 10.1016/0921-4526(93)90108-I
  • [10] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953), doi: 10.1016/0001-6160(53)90006-6
  • [11] M.T. Hutchings, E.J. Samuelsen, Phys. Rev. B 6, 3447 (1972), doi: 10.1103/PhysRevB.6.3447
  • [12] A. Szytuła, Solid State Phenom. 112, 39 (2006), doi: 10.4028/www.scientific.net/SSP.112.39
  • [13] L. Néel, Compt. Rend. Hebdomad. Séances Acad. Sci. 252, 4075 (1961), http://gallica.bnf.fr/ark:/12148/bpt6k763p/f1495.item.r=.zoom
  • [13] L. Néel, Compt. Rend. Hebdomad. Séances Acad. Sci. 253, 9 (1961), http://gallica.bnf.fr/ark:/12148/bpt6k3205m/f11.item.r=.zoom
  • [13] L. Néel, Compt. Rend. Hebdomad. Séances Acad. Sci. 253, 1286 (1961), http://gallica.bnf.fr/ark:/12148/bpt6k7771/f156.item.r=.zoom

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv129n107kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.