Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 6 | 990-993
Article title

Elastic Enhancement Factor: Mesoscopic Systems versus Macroscopic 2D Electromagnetic Analogue Devices

Title variants
Languages of publication
Excess of probabilities of the elastic processes over the inelastic ones is a common feature of the resonance phenomena described in the framework of the random matrix theory. This effect is quantitatively characterized by the elastic enhancement factor F^{(β)} that is the typical ratio of elastic and inelastic cross-sections. Being measured experimentally, this quantity can supply us with information on specific features of the dynamics of the intermediate complicated open system. We discuss properties of the enhancement factor in a wide scope from mesoscopic systems to macroscopic analogue electromagnetic resonators and demonstrate essential qualitative distinction between the elastic enhancement factor's peculiarities in these two cases. Complete analytical solution is found for the case of systems without time-reversal symmetry and only a few open equivalent scattering channels.
  • Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia
  • Novosibirsk Technical University, Novosibirsk, Russia
  • Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia
  • Novosibirsk State University, Novosibirsk, Russia
  • [1] P.A. Moldauer, Phys. Rev. 123, 968 (1961), doi: 10.1103/physrev.123.968
  • [1a] P.A. Moldauer, Phys. Rev. B 135, 642 (1964), doi: 10.1103/physrev.135.b642
  • [2] J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985), doi: 10.1016/0370-1573(85)90070-5
  • [3] J.J.M. Verbaarschot, Ann. Phys. 168, 368 (1985), doi: 10.1016/0003-4916(86)90036-9
  • [4] Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, J. Phys. A Math. Gen. 38, 10731 (2005), doi: 10.1088/0305-4470/38/49/017
  • [5] Y.A. Kharkov, V.V. Sokolov, Phys. Lett. B 718, 1562 (2013), doi: 10.1016/j.physletb.2012.12.054
  • [6] N. Lehmann, D.V. Savin, V.V. Sokolov, H.-J. Sommers, Physica D 86, 572 (1995), doi: 10.1016/0167-2789(95)00185-7
  • [7] M.L. Mehta, Random Matrices, 3rd ed., Elsevier, Amsterdam 2004
  • [8] A. Pandey, Chaos Solitons Fractals 5, 1275 (1995), doi: 10.1016/0960-0779(94)e0065-w
  • [8a] T. Guhr, Phys. Rev. Lett. 76, 2258 (1996), doi: 10.1103/physrevlett.76.2258
  • [8b] T. Guhr, A. Müller-Groeling, J. Math. Phys. 38, 1870 (1997), doi: 10.1063/1.531918
  • [9] H. Kunz, B. Shapiro, Phys. Rev. E 58, 400 (1998), doi: 10.1103/physreve.58.400
  • [10] H.-J. Stöckmann, J. Stein, Phys. Rev. Lett. 64, 2215 (1990), doi: 10.1103/physrevlett.64.2215
  • [11] S. Sridhar, Phys. Rev. Lett. 67, 785 (1991), doi: 10.1103/physrevlett.67.785
  • [12] Z. Pluhar, H.A. Weidenmüller, J.A. Zuk, C.H. Lewenkopf, F.J. Wegner, Ann. Phys. 243, 1 (1995), doi: 10.1006/aphy.1995.1089
  • [12a] M. Lawniczak, S. Bauch, O. Hul, L. Sirko, Phys. Rev. E 81, 046204 (2010), doi: 10.1103/physreve.81.046204
  • [12b] M. Lawniczak, Sz. Bauch, O. Hul, L. Sirko, Phys. Scr. T143, 014014 (2011), doi: 10.1088/0031-8949/2011/t143/014014
  • [12c] M. Lawniczak, Sz. Bauch, O. Hul, L. Sirko, Phys. Scr. T147, 014018 (2012), doi: 10.1088/0031-8949/2012/t147/014018
  • [12d] M. Lawniczak, A. Nicolau-Kuklinska, S. Bauch, O. Hul, L. Sirko, in: Plenary talk at the Int. Conf. CHAOS2013, Istanbul (Turkey), 2013
  • [13] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schafer, H.A. Weidenmuller, Phys. Rev. E 81, 036205 (2010), doi: 10.1103/physreve.81.036205
  • [14] Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, Phys. Rev. E 55, R4857 (1997), doi: 10.1103/physreve.55.r4857
  • [15] M. Lawniczak, M. Bialous, V. Yunko, Sz. Bauch, L. Sirko, Phys. Rev. E 91, 032925 (2015), doi: 10.1103/physreve.91.032925
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.