PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 6 | 963-967
Article title

Chaotic Scattering: Exact Results and Microwave Experiments

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Scattering experiments are indispensable for the study of classical and quantum systems. In the Heidelberg approach, universal features are addressed by assuming that the reaction zone is fully quantum chaotic. Although it stems from nuclear physics, it later on turned out to be applicable to a large variety of systems on different scales, including classical wave systems. For a long time, the distribution of the off-diagonal scattering-matrix elements resisted analytical treatment. I review two recent studies in which my collaborators and I fully solved this problem. We also carried out a comparison with data from microwave experiments.
Keywords
EN
Year
Volume
128
Issue
6
Pages
963-967
Physical description
Dates
published
2015-12
References
  • [1] Scattering, Scattering and Inverse Scattering in Pure and Applied Science, Eds. R. Pike, P. Sebatier, Academic Press, New York 2001
  • [2] R. Blümel, U. Smilansky, Phys. Rev. Lett. 64, 241 (1990), doi: 10.1103/PhysRevLett.64.241
  • [3] Y.V. Fyodorov, T. Kottos, H.-J. Stöckmann, J. Phys. A Math. Gen. 38, (2005), doi: 10.1088/0305-4470/38/15/E01
  • [4] G.E. Mitchell, A. Richter, H.A. Weidenmüller, Rev. Mod. Phys. 82, 2845 (2010), doi: 10.1103/RevModPhys.82.2845
  • [5] T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998), doi: 10.1016/S0370-1573(97)00088-4
  • [6] C. Mahaux, H.A. Weidenmüller, Shell Model Approach to Nuclear Reactions, North Holland, Amsterdam 1969
  • [7] P.A. Mello, P. Pereyra, T.H. Seligman, Ann. Phys. 161, 254 (1985), doi: 10.1016/0003-4916(85)90080-6
  • [8] M. Martínez-Mares, P.A. Mello, Phys. Rev. E 72, 026224 (2005), doi: 10.1103/PhysRevE.72.026224
  • [9] J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985), doi: 10.1016/0370-1573(85)90070-5
  • [10] E.D. Davis, D. Boosé, Phys. Lett. B 211, 379 (1988); Z. Phys. A 332, 427 (1989), doi: 10.1016/0370-2693(88)91879-5
  • [11] D. Agassi, H.A. Weidenmüller, G. Mantzouranis, Phys. Rep. 22, 145 (1975), doi: 10.1016/0370-1573(75)90028-9
  • [12] C.H. Lewenkopf, H.A. Weidenmüller, Ann. Phys. 212, 53 (1991), doi: 10.1016/0003-4916(91)90372-F
  • [13] M. Baldo, E.G. Lanza, A. Rapisarda, Chaos 3, 691 (1993), doi: 10.1063/1.165930
  • [14] E. Ott, T. Tél, Chaos 3, 417 (1993), doi: 10.1063/1.165949
  • [15] J.A. Folk, S.R. Patel, S.F. Godijn, A.G. Huibers, S.M. Cronenwett, C.M. Marcus, K. Campman, A.C. Gossard, Phys. Rev. Lett. 76, 1699 (1996), doi: 10.1103/PhysRevLett.76.1699
  • [16] Y.V. Fyodorov, H.-J. Sommers, J. Math. Phys. 38, 1918 (1997), doi: 10.1063/1.531919
  • [17] Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, J. Phys. A Math. Gen. 38, 10731 (2005), doi: 10.1088/0305-4470/38/49/017
  • [18] I. Rozhkov, Y.V. Fyodorov, R.L. Weaver, Phys. Rev. E 68, 016204 (2003), doi: 10.1103/PhysRevE.68.016204
  • [18a] I. Rozhkov, Y.V. Fyodorov, R.L. Weaver, Phys. Rev. E 69, 036206 (2004), doi: 10.1103/PhysRevE.69.036206
  • [19] U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005), doi: 10.1103/PhysRevLett.94.144101
  • [20] U. Kuhl, H.-J. Stöckmann, R. Weaver, J. Phys. A Math. Gen. 38, 10433 (2005), doi: 10.1088/0305-4470/38/49/001
  • [21] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 71, 056215 (2005), doi: 10.1103/PhysRevE.71.056215
  • [22] O. Hul, O. Tymoshchuk, S. Bauch, P.M. Koch, L. Sirko, J. Phys. A Math. Gen. 38, 10489 (2005), doi: 10.1088/0305-4470/38/49/003
  • [23] M. Ławniczak, O. Hul, S. Bauch, P. Sěba, L. Sirko, Phys. Rev. E 77, 056210 (2008), doi: 10.1103/PhysRevE.77.056210
  • [24] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, J. Verbaarschot, H.A. Weidenmüller, Phys. Rev. Lett. 103, 064101 (2009), doi: 10.1103/PhysRevLett.103.064101
  • [25] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, H.A. Weidenmüller, Phys. Rev. E 81, 036205 (2010), doi: 10.1103/PhysRevE.81.036205
  • [26] B. Dietz, H.L. Harney, A. Richter, F. Schäfer, H.A. Weidenmüller, Phys. Lett. B 685, 263 (2010), doi: 10.1016/j.physletb.2010.01.074
  • [27] C. Ellegaard, T. Guhr, K. Lindemann, J. Nygård, M. Oxborrow, Phys. Rev. Lett. 77, 4918 (1996), doi: 10.1103/PhysRevLett.77.4918
  • [28] M. Avlund, C. Ellegaard, M. Oxborrow, T. Guhr, N. Søndergaard, Phys. Rev. Lett. 104, 164101 (2010), doi: 10.1103/PhysRevLett.104.164101
  • [29] J.-H. Yeh, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 85, 015202 (2012), doi: 10.1103/PhysRevE.85.015202
  • [30] J.-H. Yeh, E. Ott, T.M. Antonsen, S.M. Anlage, Acta Phys. Pol. A 120, A-85 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z6ap51.pdf
  • [31] V.N. Bringi, V. Chandrasekar, Polarimetric Doppler Weather Radar: Principle and Applications, Cambridge University Press, Cambridge 2001
  • [32] M.L. Mehta, Random Matrices, Academic Press, New York 2004
  • [33] C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997), doi: 10.1103/RevModPhys.69.731
  • [34] H.A. Weidenmüller, in: Chaos and Quantum Chaos, Ed. W.D. Heiss, Springer, New York 1992
  • [35] K.B. Efetov, Adv. Phys. 32, 53 (1983); Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge 1997, doi: 10.1080/00018738300101531
  • [36] T. Guhr, in: The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford 2010
  • [37] S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M. Miski-Oglu, A. Richter, F. Schäfer, Phys. Rev. Lett. 111, 030403 (2013), doi: 10.1103/PhysRevLett.111.030403
  • [38] A. Nock, S. Kumar, H.-J. Sommers, T. Guhr, Ann. Phys. 342, 103 (2014), doi: 10.1016/j.aop.2013.11.006
  • [39] P.W. Brouwer, Phys. Rev. B 51, 16878 (1995), doi: 10.1103/PhysRevB.51.16878
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n601kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.