Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 5 | 875-878

Article title

Influence of Temperature on Electrical Parameters of GaAs in the Aspect of Applications in Photovoltaics

Content

Title variants

Languages of publication

EN

Abstracts

EN
The article describes the results of the research on thermal stability of electrical parameters of n-type gallium arsenide doped with tellurium, defected by ion implantation, measured at the operating temperature ranging from 77 K to 373 K. The aim of the work is to investigate the character of changes in the values of such electrical parameters as resistivity, capacity and loss tangent of the tested GaAs samples, exposed to different thermal conditions. Temperature dependences analyzed in the paper could be taken as a basis to formulate general speculations concerning potential applications of the tested material as a substrate in the process of photovoltaic cells production. The phenomenon of conversion of solar energy into electricity is strongly connected with electrical properties of photovoltaic cell substrate material and its internal structure. Moreover, the efficiency of photoconversion is affected by such factors as charge carrier lifetime distribution and diffusion length in the base material. Therefore, it is necessary to confirm what is the character of the influence of operating temperature on the electrical parameters of GaAs and what modification could be introduced in the material in order to increase the efficiency of photoconversion.

Keywords

EN

Contributors

author
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
author
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland

References

  • [1] National Renewable Energy Laboratory, Research Cell Efficiency Report, U.S. Department of Energy, 2014
  • [2] V. Benda, AIP Conf. Proc. 1499, 6 (2012), doi: 10.1063/1.4768962
  • [3] T. Markvart, L. Castañer, Practical Handbook of Photovoltaics Fundamentals and Applications, Elsevier Advanced Technology, Oxford 2003
  • [4] Handbook of Photovoltaic Science and Engineering, Eds. A. Luque, S. Hegedus, Wiley, Chichester 2011
  • [5] A. Chandra, G. Anderson, S. Melkote, W. Gao, H. Haitjema, K. Wegener, CIRP Annals - Manufact. Technol. 63, 797 (2014), doi: 10.1016/j.cirp.2014.05.008
  • [6] D. Stievenard, X. Boddaert, J.C. Bourgoin, H.J. von Bardeleben, Phys. Rev B 41, 5271 (1990), doi: 10.1103/PhysRevB.41.5271
  • [7] H.H. Tan, J.S. Williams, C. Jagadish, J. Appl. Phys. 78, 1481 (1995), doi: 10.1063/1.360237
  • [8] M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, Progr. Photovolt. Res. Appl. 21, 1 (2013), doi: 10.1002/pip.2352
  • [9] L. Mattos, S. Scully, M. Syfu, E. Olson, L. Yang, C. Ling, B. Kayes, G. He, in: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, IEEE, 2012, p. 003187, doi: 10.1109/PVSC.2012.6318255
  • [10] E. Yablonovitch, T. Gmitter, J. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222 (1987), doi: 10.1063/1.98946
  • [11] B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, G. Higashi, in: Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, IEEE, 2011, p. 000004, doi: 10.1109/PVSC.2011.6185831
  • [12] T.J. Silverman, M.G. Deceglie, B. Marion, S. Cowley, B. Kayes, S. Kurtz, in: Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, IEEE, 2013, p. 0103, doi: 10.1109/PVSC.2013.6744109
  • [13] M. Kowalski, J. Partyka, P. Węgierek, P. Żukowski, F.F. Komarov, A.V. Jurchenko, D. Freik, Vacuum 78, 311 (2005), doi: 10.1016/j.vacuum.2005.01.112
  • [14] M. Turek, A. Droździel, K. Pyszniak, D. Mączka, Przegląd Elektrotechniczny 11b, 328 (2012) (in Polish) http://red.pe.org.pl/abstract_pl.php?nid=6840
  • [15] M. Turek, A. Drozdziel, K. Pyszniak, S. Prucnal, D. Mączka, Y.V. Yushkevich, Y.A. Vaganov, Instrum. Exp. Tech. 55, 469 (2012), doi: 10.1134/S0020441212030062
  • [16] M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Rev. Sci. Instrum. 80, 043304 (2009), doi: 10.1063/1.3117357
  • [17] M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Nucl. Instrum. Methods Phys. Res. B 269, 700 (2011), doi: 10.1016/j.nimb.2011.01.133
  • [18] M. Turek, A. Droździel, K. Pyszniak, S. Prucnal, J. Żuk, Przegląd Elektrotechniczny 86, 193 (2010) (in Polish)
  • [19] P. Żukowski, J. Partyka, P. Węgierek, Phys. Status Solidi A 159, 509 (1997), doi: 10.1002/1521-396X(199702)159:2%3C509::AID-PSSA509%3E3.0.CO;2-K
  • [20] J. Partyka, P. Żukowski, P. Węgierek, A. Rodzik, Y. Sidorenko, Y. Szostak, Semiconductors 36, 1326 (2002), doi: 10.1134/1.1529241
  • [21] P. Zukowski, T. Kołtunowicz, J. Partyka, P. Wegierek, F.F. Komarov, A.M. Mironov, N. Butkievith, D. Freik, Vacuum 81, 1137 (2007), doi: 10.1016/j.vacuum.2007.01.070
  • [22] D. Pons, J.C. Bourgoin, J. Phys. C Solid State Phys. 18, 3839 (1985), doi: 10.1088/0022-3719/18/20/012

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n516kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.