Journal
Article title
Title variants
Languages of publication
Abstracts
The defect build-up, structure recovery and lattice location of transition metals in ion bombarded and thermally annealed ZnO and GaN single crystals were studied by channeled Rutherford backscattering spectrometry and channeled particle-induced X-ray emission measurements using 1.57 MeV ⁴He ions. Ion implantation to a fluence of 1.2×10¹⁶ ions/cm² was performed using 120 keV Co and 120 keV Mn ions. Thermal annealing was performed at 800°C in argon flow. Damage distributions were determined using the Monte Carlo McChasy simulation code. The simulations of channeled Rutherford backscattering spectra reveal that the ion implantation leads to formation of two types of defect structures in ZnO and GaN such as point and extended defects, such as dislocations. The concentrations of both types of defects are at a comparable level in both structures and for both implanted ions. Differences between both implantations appear after thermal annealing where the Mn-doped ZnO reveals much better transition metals substitution and recovery effect.
Discipline
- 61.43.-j: Disordered solids(see also 81.05.Gc Amorphous semiconductors, 81.05.Kf Glasses, and 81.05.Rm Porous materials; granular materials in materials science; for photoluminescence of disordered solids, see 78.55.Mb and 78.55.Qr)
- 85.40.-e: Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology(see also 85.45.-w Vacuum microelectronics; 84.40.Lj Microwave integrated electronics; 42.82.-m Integrated optics; 85.25.Hv Superconducting logic elements and memory devices; microelectronic circuits)
- 81.05.-t: Specific materials: fabrication, treatment, testing, and analysis(for superconducting materials, see 74.70.-b, and 74.72.-h; for magnetic materials, see 75.50.-y; for optical materials, see 42.70.-a; for dielectric materials, see 77.84.-s; for disperse systems and complex fluids, see 82.70.-y; see also 82.75.-z Molecular sieves, zeolites, clathrates, and other complex solids; for materials properties, see sections 60 and 70)
- 82.80.-d: Chemical analysis and related physical methods of analysis(for related instrumentation, see section 07; for spectroscopic techniques in biological physics, see 87.64.-t)
- 61.72.-y: Defects and impurities in crystals; microstructure(for radiation induced defects, see 61.80.-x; for defects in surfaces, interfaces, and thin films, see 68.35.Dv and 68.55.Ln; see also 85.40.Ry Impurity doping, diffusion, and ion implantation technology; for effects of crystal defects and doping on superconducting transition temperature, see 74.62.Dh)
Journal
Year
Volume
Issue
Pages
845-848
Physical description
Dates
published
2015-11
Contributors
author
- National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
- National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
- National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
- National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
- National Centre for Nuclear Research, A. Sołtana 7, 05-400 Otwock, Poland
author
- Instituut voor Kern-en Stralingsfysica, KU Leuven, 3001 Leuven, Belgium
References
- [1] J.K. Furdyna, J. Appl. Phys. 64, R29 (1988), doi: 10.1063/1.341700
- [2] S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, J. Electron. Mater. 36, 462 (2007), doi: 10.1007/s11664-006-0034-z
- [3] I. Zutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004), doi: 10.1103/RevModPhys.76.323
- [4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000), doi: 10.1126/science.287.5455.1019
- [5] K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002), doi: 10.1088/0268-1242/17/4/309
- [6] R.P. Borges, J.V. Pinto, R.C. da Silva, A.P. Goncalves, M.M. Cruz, M. Godinho, J. Magn. Magn. Mater. 316, e191 (2007), doi: 10.1016/j.jmmm.2007.02.109
- [7] S. Zhou, K. Potzger, J. von Borany, R. Grötzschel, W. Skorupa, M. Helm, J. Fassbender, Phys. Rev. B 77, 035209 (2008), doi: 10.1103/PhysRevB.77.035209
- [8] K. Potzger, S. Zhou, Phys. Status Solidi B 246, 1147 (2009), doi: 10.1002/pssb.200844272
- [9] S. Zhou, K. Potzger, Q. Xu, G. Talut, M. Lorenz, W. Skorupa, M. Helm, J. Fassbender, M. Grundmann, H. Schmidt, Vacuum 83, S13 (2009), doi: 10.1016/j.vacuum.2009.01.030
- [10] A. Audren, A. Hallén, M.K. Linnarsson, G. Possnert, Nucl. Instrum. Methods Phys. Res. B 268, 1842 (2010), doi: 10.1016/j.nimb.2010.02.032
- [11] W.K. Chu, Phys. Rev. 13, 2057 (1976), doi: 10.1103/PhysRevA.13.2057
- [12] M. Mayer, in: Workshop on Nuclear Data for Science and Technology: Materials Analysis Trieste, Trieste 2003, p. 55 http://users.ictp.it/ pub_off/lectures/lns022/Mayer_1/Mayer_1.pdf
- [13] T.B. Johansson, K.R. Axelsson, S.A.E. Johansson, Nucl. Instrum. Methods Phys. Res. B 84, 141 (1970), doi: 10.1016/0029-554X(70)90751-2
- [14] L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Nucl. Instrum. Methods Phys. Res. B 240, 277 (2005), doi: 10.1016/j.nimb.2005.06.129
- [15] A. Turos, P. Jóźwik, L. Nowicki, N. Sathish, Nucl. Instrum. Methods Phys. Res. B 332, 50 (2014), doi: 10.1016/j.nimb.2014.02.028
- [16] A. Stonert, K. Pągowska, R. Ratajczak, P. Caban, W. Strupinski, A. Turos, Nucl. Instrum. Methods Phys. Res. B 266, 1224 (2008), doi: 10.1016/j.nimb.2007.12.054
- [17] Z. Werner, R. Ratajczak, J. Gosk, M. Barlak, A. Twardowski, C. Pochrybniak, Q. Zhao, Appl. Surf. Sci. 310, 242 (2014), doi: 10.1016/j.apsusc.2014.03.104
- [18] F.W. Kleinlein, R. Helbig, Z. Phys. 266, 201 (1974), doi: 10.1007/BF01668841
- [19] O. Koskelo, J. Raisanen, F. Tuomisto, D. Eversheim, K. Grasza, A. Mycielski, Thin Solid Films 518, 3894 (2010), doi: 10.1016/j.tsf.2009.11.081
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n508kz