PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 737-739
Article title

Numerical Simulation of Dislocation Cross-Slip with Annihilation in Non-Symmetric Configuration

Content
Title variants
Languages of publication
EN
Abstracts
EN
The interpretation of the experimentally determined critical distance of the screw dislocation annihilation in persistent slip bands is still an open question. We attempt to analyze this problem using the discrete dislocation dynamics simulations. Dislocations are represented by parametrically described curves. The model is based on the numerical solution of the dislocation motion law belonging to the class of curvature driven curve dynamics. We focus on the simulation of the cross-slip of one edge dislocation curve bowing out of the wall of a persistent slip band channel and one screw dislocation gliding through the channel. The dislocations move under their mutual interaction, the line tension and the applied stress. A cross-slip leads to annihilation of the dipolar parts. In the changed topology each dislocation evolves in two slip planes and the plane where cross-slip occurred. The goal of our work is to develop and test suitable mathematical and physical model of the situation. The results are subject to comparison with symmetric configuration of two screw dislocations studied in papers by Pauš et al. The simulation of the dislocation evolution and merging is performed by the improved parametric approach. Numerical stability is enhanced by the tangential redistribution of the discretization points.
Keywords
EN
Publisher

Year
Volume
128
Issue
4
Pages
737-739
Physical description
Dates
published
2015-10
Contributors
author
  • Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic
author
  • Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic
  • Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague, Czech Republic
References
  • [1] W. Püschl, Prog. Mater. Sci. 47, 415 (2002), doi: 10.1016/S0079-6425(01)00003-2
  • [2] T. Rasmussen, T. Vegge, T. Leffers, O.B. Pedersen, K.W. Jacobsen, Philos. Mag. A 80, 1273 (2000), doi: 10.1080/01418610008212115
  • [3] T. Vegge, K.W. Jacobsen, J. Phys. Condens. Matter 14, 2929 (2002), doi: 10.1088/0953-8984/14/11/309
  • [4] P. Pauš, J. Kratochvíl, M. Beneš, Acta Mater. 61, 7917 (2013), doi: 10.1016/j.actamat.2013.09.032
  • [5] P. Pauš, J. Kratochvíl, M. Beneš, Philos. Mag. Lett. 94, 45 (2014), doi: 10.1080/09500839.2013.855332
  • [6] P. Pauš, M. Beneš, J. Kratochvíl, Acta Phys. Pol. A 122, 509 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/122/a122z3p21.pdf
  • [7] P. Pauš, M. Beneš, Kybernetika 45, 591 (2009)
  • [8] V. Minárik, M. Beneš, J. Kratochvíl, J. Appl. Phys. 107, 841 (2010), doi: 10.1063/1.3340518
  • [9] D. Ševčovič, S. Yazaki, Jpn. J. Ind. Appl. Math. 28, 413 (2011), doi: 10.1007/s13160-011-0046-9
  • [10] B. Devincre, Solid State Commun. 93, 875 (1995), doi: 10.1016/0038-1098(94)00894-9
  • [11] J. Křišt'an, J. Kratochvíl, Philos. Mag. 87, 4593 (2007), doi: 10.1080/14786430701576324
  • [12] U. Essmann, K. Differt, Mater. Sci. Eng. A 208, 56 (1996), doi: 10.1016/0921-5093(95)10063-6
  • [13] U. Essmann, H. Mughrabi, Philos. Mag. A 40, 731 (1979), doi: 10.1080/01418617908234871
  • [14] H. Mughrabi, F. Ackermann, K. Herz, in: Fatigue Mechanisms, Proc. ASTM-NBS-NSF Symp. for Testing and Materials, Kansas City 1978, p. 69
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n464kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.