PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 730-736
Article title

Thermal Properties of Conducting Polypyrrole Nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Thermal properties of polypyrrole nanotubes synthesized by the chemical oxidation of pyrrole with iron(III) chloride in the presence of methyl orange as structure-guiding template, have been investigated. As-prepared polypyrrole salt and corresponding base were compressed into pellets. Thermogravimetric analysis has shown that the heating/cooling of both polymers is connected with water desorption/re-absorption. This process influences all temperature dependences of the thermophysical properties. The specific heat of both polypyrrole forms was the same at 35°C. The thermal diffusivity of polypyrrole base was lower than that of the salt. The dilatational characteristics are strongly influenced by water desorption/re-absorption. Water desorption is connected with the contraction of polypyrrole and its re-absorption with the expansion of polypyrrole. The electrical resistivity was measured, in analogy to thermal experiments, by a four-point van der Pauw method. The electrical resistivity was 0.016 and 10.2 Ωcm at room temperature, for both materials. The electrical resistivity was also influenced by water desorption/re-absorption as well as other thermophysical properties.
Keywords
Contributors
  • Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, 121 16 Prague 2, Czech Republic
author
  • Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, 180 00 Prague 8, Czech Republic
author
  • Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, 180 00 Prague 8, Czech Republic
author
  • Faculty of Chemical Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6, Czech Republic
author
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
References
  • [1] C. Li, H. Bai, G.Q. Shi, Chem. Soc. Rev. 38, 2397 (2009), doi: 10.1039/b816681c
  • [2] S. Cosnier, A. Karyakin, Electropolymerization: Concepts, Materials and Applications, Wiley-VCH, Weinheim 2010
  • [3] L.X. Wang, X.C. Li, Y.L. Yang, React. Funct. Polym. 47, 125 (2001), doi: 10.1016/S1381-5148(00)00079-1
  • [4] B. Guo, L. Baolin, Prog. Polym. Sci. 38, 1263 (2013), doi: 10.1016/j.progpolymsci.2013.06.003
  • [5] N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, M. Omastová, Eur. Polym. J. 43, 2331 (2007), doi: 10.1016/j.eurpolymj.2007.03.045
  • [6] X. Zhang, S. Wang, S. Lu, J. Su, T. He, J. Power Sources 246, 491 (2014), doi: 10.1016/j.jpowsour.2013.07.098
  • [7] M. Omastová, M. Mičušík, Chem. Pap. 66, 392 (2012), doi: 10.2478/s11696-011-0120-4
  • [8] H. Feng, B. Wang, L. Tan, N. Chen, N. Wang, B. Chen, J. Power Sources 246, 621 (2014), doi: 10.1016/j.jpowsour.2013.08.002
  • [9] W. Liang, J. Lei, C.R. Martin, Synth. Met. 52, 227 (1992), doi: 10.1016/0379-6779(92)90310-F
  • [10] I. Carrillo, E. Sánchez de la Blanca, M.I. Redondo, M.V. García, M.J. Gonzáles-Tereja, J.L.G. Fierro, E. Enciso, Synth. Met. 162, 136 (2012), doi: 10.1016/j.synthmet.2011.11.023
  • [11] J. Stejskal, J. Prokeš, M. Trchová, Polym. Degrad. Stab. 102, 67 (2014), doi: 10.1016/j.polymdegradstab.2014.02.001
  • [12] Y.Z. Long, M.M. Li, Ch. Gu, M. Wan, J.L. Duvail, Z. Liu, Z. Fan, Prog. Polym. Sci. 36, 1415 (2011), doi: 10.1016/j.progpolymsci.2011.04.001
  • [13] J. Kopecká, D. Kopecký, M. Vrňata, P. Fitl, J. Stejskal, M. Trchová, P. Bober, Z. Morávková, J. Prokeš, I. Sapurina, RSC Adv. 4, 1551 (2014), doi: 10.1039/C3RA45841E
  • [14] X.M. Feng, Z.Z. Sun, W.H. Hou, J.J. Zhu, Nanotechnology 18, 195603 (2007)
  • [15] X.M. Yang, L. Li, Y. Zhao, Synth. Met. 160, 1822 (2010), doi: 10.1016/j.synthmet.2010.06.018
  • [16] Z.F. Zhou, Z.H. Zhang, H.R. Peng, Y. Qin, G.C. Li, K.Z. Chen, RSC Adv. 4, 5524 (2014), doi: 10.1039/C3RA45076G
  • [17] M.T. Ramesan, J. Appl. Polym. Sci. 128, 1540 (2013), doi: 10.1002/app.38304
  • [18] P. Jayamurgan, V. Ponnuswamy, S. Ashokan, T. Mahalingam, Iran. Polym. J. 22, 219 (2013), doi: 10.1007/s13726-012-0119-x
  • [19] R. Saxena, V. Shaktawat, K. Sharma, N.S. Saxena, T.P. Sharma, Iran. Polym. J. 17, 659 (2008)
  • [20] J.S. Lin, J. Polym. Res. 6, 237 (1999), doi: 10.1007/s10965-006-0093-0
  • [21] O. Sul, S. Jang, E.H. Yang, IEEE Trans. Nanotechnol. 10, 985 (2011), doi: 10.1109/TNANO.2010.2090667
  • [22] J. Škodová, D. Kopecký, M. Vrňata, M. Varga, J. Prokeš, M. Cieslar, P. Bober, J. Stejskal, Polym. Chem. 4, 3610 (2013), doi: 10.1039/c3py00250k
  • [23] A. Rudajevová, Mater. Res. Bull. 26, 1363 (1991), doi: 10.1016/0025-5408(91)90153-D
  • [24] B.A. Lunn, J. Unsworth, N.G. Booth, P.C. Innis, J. Mater. Sci. 28, 5092 (1993), doi: 10.1007/BF00361185
  • [25] H. Okuzaki, K. Funasaka, Macromolecules 33, 8307 (2000), doi: 10.1021/ma0000531
  • [26] E.S. Matveeva, Synth. Met. 79, 127 (1996), doi: 10.1016/0379-6779(96)80185-8
  • [27] A. Alix, L. Lemoine, M. Nechtschein, J.P. Travers, C. Menardo, Synth. Met. 29, E457 (1989), doi: 10.1016/0379-6779(89)90333-0
  • [28] E. Tobolková, J. Prokeš, I. Křivka, M. Trchová, J. Stejskal, Macromol. Symp. 212, 447 (2004), doi: 10.1002/masy.200450856
  • [29] R. Erlandsson, O. Inganas, I. Lundstrom, W.R. Salaneck, Synth. Met. 10, 303 (1985), doi: 10.1016/0379-6779(85)90039-6G
  • [30] Y.C.H. Liu, B.J. Hwang, J. Electroanal. Chem. 501, 100 (2001), doi: 10.1016/S0022-0728(00)00510-6
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n463kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.