PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 714-717
Article title

Grain-Subgrain Structure and Vacancy-Type Defects in Submicrocrystalline Nickel at Low Temperature Annealing

Content
Title variants
Languages of publication
EN
Abstracts
EN
Scanning tunneling microscopy, positron annihilation and X-ray diffraction were applied for the study of annealing of submicrocrystalline nickel prepared by equal channel angular pressing. Several processes were revealed in the structure of submicrocrystalline nickel on different scale levels during annealing in the range Δ T=(20÷360)°C. A decrease of grain nonequiaxiality and further structure refinement were observed with a temperature increase in the range Δ T=(20÷180)°C. Subgrain growth with maximum =60 nm at 120°C occurred on the lower scale level within the same temperature range. Grain growth and microstress decrease in submicrocrystalline nickel observed at T>180°C indicate the beginning of recrystallization. The main positron trap centers were identified in submicrocrystalline nickel within different temperature ranges. In as-prepared samples positrons are trapped at dislocation-type defects and vacancy clusters that can include up to 5 vacancies. At the annealing temperature Δ T=(20÷180)°C positrons are trapped at low-angle boundaries enriched by impurities. Within the range Δ T=(180÷360)°C the dominant trap is dislocations.
Keywords
Contributors
author
  • National Research Tomsk Polytechnic University, Tomsk, Russia
  • Institute of Strength Physics and Materials Science, Siberian Branch of RAS, Tomsk, Russia
author
  • National Research Tomsk Polytechnic University, Tomsk, Russia
author
  • National Research Tomsk Polytechnic University, Tomsk, Russia
author
  • National Research Tomsk Polytechnic University, Tomsk, Russia
  • Institute of Strength Physics and Materials Science, Siberian Branch of RAS, Tomsk, Russia
author
  • Institute for Metals Superplasticity Problems of Russian Academy of Sciences, Ufa, Russia
References
  • [1] R.Z. Valiev, I.V. Alexandrov, Nanostructured Materials Produced by Severe Plastic Deformation, Logos, Moscow 2000
  • [2] T.G. Langdon, Acta Mater. 61, 7035 (2013), doi: 10.1016/j.actamat.2013.08.018
  • [3] P.V. Kuznetsov, I.V. Petrakova, T.V. Rakhmatulina, A.A. Baturin, A.V. Korznikov, Industr. Lab. 78, 26 (2012)
  • [4] Z.Q. Yang, Mater. Lett. 60, 3846 (2006), doi: 10.1016/j.matlet.2006.03.127
  • [5] R.S. Laptev, Y.S. Bordulev, V.N. Kudiyarov, A.M. Lider, G.V. Garanin, Adv. Mater. Res. 880, 134 (2014), doi: 10.4028/scientific.net/ AMR.880.134
  • [6] S.V. Divinski, G. Reglitz, M. Wegner, M. Peterlechner, G. Wilde, J. Appl. Phys. 115, 113503 (2014), doi: 10.1063/1.4867416
  • [7] J. Cizek, I. Prochazka, M. Cieslar, I. Stulikova, F. Chmelik, R. Islamgaliev, Phys. Status Solidi A 191, 391 (2002), doi: 10.1002/1521-396X(200206)191:2<391::AID-PSSA391>3.0.CO;2-H
  • [8] T.E.M. Staab, R. Krause-Rehberg, B. Kieback, J. Mater. Sci. 34, 3833 (1999), doi: 10.1023/A:1004666003732
  • [9] G. Dlubekt, O. Brummert, N. Meyendorfi, P. Hautojarvi, A. Vehanent, J. Yli-Kauppila, J. Phys. F Met. Phys. 9, 1961 (1979), doi: 10.1088/0305-4608/9/10/007
  • [10] M.J. Puska, R.M. Nieminen, J. Phys. F Met. Phys. 13, 333 (1983), doi: 10.1088/0305-4608/13/2/009
  • [11] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer, Berlin 1999
  • [12] L. Liszkay, C. Corbel, L. Baroux, P. Hautojarvi, M. Bayhan, A.W. Brinkman, S. Tatarenko, Appl. Phys. Lett. 64, 1380 (1994), doi: 10.1063/1.111994
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n459kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.