Title variants
Languages of publication
Abstracts
The phases chemical composition and micromechanical properties in single crystal of Ni-based superalloy with chemical composition of 12.1 Al, 5.3 Cr, 9.4 Co, 0.8 Nb, 0.9 Ta, 0.7 Mo, 2.5 W, 0.7 Re and Ni-balance (in at.%) were changed during hard cyclic viscoplastic deformation at room temperature. The method we used based on the Bauschinger effect. The changes in the dendritic microstructure and chemical composition were characterized by scanning electron microscopy and energy dispersive spectrometry. The phases micromechanical properties evolution were characterized by nanoindentation. The results show that the cumulative strain or strain energy density increase arouse the interdiffusion of atoms between the different phases and the phases equilibrium in SC was changed. It is established that the interdiffusion rate depends on elements atoms activation energy. The new γ-γ'-eutectic pools were formed in the primary dendrites region (with fine γ/γ'-phase) and as result the length of newly formed dendrites was decreased significantly. The maximal and plastic depth of nanoindentation were measured and the corresponding micromechanical properties of phases calculated.
Discipline
- 87.15.Vv: Diffusion
- 81.05.Bx: Metals, semimetals, and alloys
- 89.90.+n: Other topics in areas of applied and interdisciplinary physics (restricted to new topics in section 89)
- 81.40.Jj: Elasticity and anelasticity, stress-strain relations
- 81.70.-q: Methods of materials testing and analysis(see also 82.80.-d Chemical analysis and related physical methods of analysis)
Journal
Year
Volume
Issue
Pages
681-683
Physical description
Dates
published
2015-10
Contributors
author
- Tallinn University of Technology, Department of Materials Engineering, Ehitajate tee 5, 19086 Tallinn, Estonia
References
- [1] R.C. Reed, The Superalloys, Fundamentals and Applications, Cambridge University Press, New York 2006, doi: 10.1017/CBO9780511541285
- [2] J.X. Zhang, H. Harada, Y. Ro, Y. Koizumi, T. Kobayashi, Acta Mater. 56, 2975 (2008), doi: 10.1016/j.actamat.2008.02.035
- [3] Z. Huda, Mater. Des. 30, 3121 (2009), doi: 10.1016/j.matdes.2008.11.030
- [4] A. Akhtar, S. Hegde, R.C. Reed, JOM - J. Minerals Metals Mater. Soc. 58, 37 (2006), doi: 10.1007/s11837-006-0066-0
- [5] Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 454-455, 357 (2007), doi: 10.1016/j.msea.2006.11.045
- [6] F.H. Latief, K. Kakehi, H. Murakami, Scr. Mater. 68, 126 (2013), doi: 10.1016/j.scriptamat.2012.09.032
- [7] A. Epishin, T. Link, U. Brückner, Acta Mater. 49, 4017 (2001), doi: 10.1016/S1359-6454(01)00290-7
- [8] J. Svoboda, P. Lukáš, Acta Mater. 48, 2519 (2000), doi: 10.1016/S1359-6454(00)00078-1
- [9] J. Dobrovská, S. Dočekalová, V. Dobrovská, K. Stránský, Solid State Phenom. 138, 201 (2008), doi: 10.4028/www.scientific.net/SSP.138.201
- [10] F.D. Fischer, J. Svoboda, Progr. Mater. Sci. 60, 338 (2014), doi: 10.1016/j.pmatsci.2013.09.001
- [11] L. Kommel, Mater. Sci. (Medžiagotyra) 15, 123 (2009)
- [12] L. Kommel, B. Straumal, Def. Diff. Forum 297-301, 1340 (2010), doi: 10.4028/www.scientific.net/DDF.297-301.1340
- [13] M. Huang, L. Zhao, J. Tong, Int. J. Plasticity 28, 141 (2012), doi: 10.1016/j.ijplas.2011.07.003
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n451kz