PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 675-680
Article title

Quantitative Model of the Surface Relief Formation in Cyclic Straining

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The cyclic strain localization in crystalline materials subjected to cyclic loading results in specific dislocation arrangement in persistent slip bands consisting of alternating dislocation rich and dislocation poor volumes. In the present model the interaction of mobile dislocations in persistent slip band leading to the formation of point defects during cyclic straining is considered. Point defects are steadily produced and simultaneously annihilated due to localized cyclic straining. The non-equilibrium point defects migrate to the matrix and result in transfer of matter between persistent slip band and the matrix and formation of the internal stresses both in the persistent slip band and in the matrix. Plastic relaxation of internal stresses leads to the formation of the characteristic surface relief in the form of persistent slip markings (extrusions and intrusions). Process of point defect migration is quantitatively described and the form of extrusion and parallel intrusions is predicted under some simplifying assumptions. The predictions of the model are discussed and predicted surface relief is compared with selected observations of surface relief produced by cyclic straining.
Keywords
Year
Volume
128
Issue
4
Pages
675-680
Physical description
Dates
published
2015-10
References
  • [1] J. Polák, Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, Amsterdam 1991
  • [2] J.G. Antonopulos, L.M. Brown, A.T. Winter, Philos. Mag. 34, 549 (1976), doi: 10.1080/14786437608223793
  • [3] H. Mughrabi, in: Proc. 5th Int. Conf. on the Strength of Metals and Alloys, Eds. P. Hasen, V. Gerold, G. Koster, Vol. 3, Pergamon Press, 1980, p. 1615
  • [4] U. Essmann, U. Gösele, H. Mughrabi, Philos. Mag. A 44, 405 (1981), doi: 10.1080/01418618108239541
  • [5] U. Essmann, Philos. Mag. A 45, 171 (1982), doi: 10.1080/01418618208243910
  • [6] J. Polák, Czech. J. Phys. B 19, 315 (1969), doi: 10.1007/BF01712868
  • [7] J. Polák, Scr. Metall. 4, 761 (1970), doi: 10.1016/0036-9748(70)90056-6
  • [8] J. Polák, Mater. Sci. Eng. 89, 35 (1987), doi: 10.1016/0025-5416(87)90247-3
  • [9] J. Polák, Mater. Sci. Eng. 92, 71 (1987), doi: 10.1016/0025-5416(87)90157-1
  • [10] J. Polák, M. Sauzay, Mater. Sci. Eng. A 500, 122 (2009), doi: 10.1016/j.msea.2008.09.022
  • [11] J. Polák, J. Man, Int. J. Fatigue 65, 18 (2014), doi: 10.1016/j.ijfatigue.2013.10.016
  • [12] J. Polák, J. Man, Mater. Sci. Eng. A 596, 15 (2014), doi: 10.1016/j.msea.2013.12.005
  • [13] P. Lukáš, M. Klesnil, J. Krejčí, Phys. Status Solidi 27, 545 (1968), doi: 10.1002/pssb.19680270212
  • [14] C. Laird, P. Charsley, H. Mughrabi, Mater. Sci. Eng. 81, 433 (1986), doi: 10.1016/0025-5416(86)90281-8
  • [15] Y. Kaneko, K. Fukui, S. Hashimoto, Mater. Sci. Eng. A 400-401, 413 (2005), doi: 10.1016/j.msea.2005.01.075
  • [16] J. Man, T. Vystavěl, A. Weidner, I. Kuběna, M. Petrenec, T. Kruml, J. Polák, Int. J. Fatigue 39, 44 (2012), doi: 10.1016/j.ijfatigue.2011.05.002
  • [17] A.T. Winter, Acta Metall. 28, 963 (1980), doi: 10.1016/0001-6160(80)90113-3
  • [18] K. Obrtlík, T. Kruml, J. Polák, Mater. Sci. Eng. A 187, 1 (1994), doi: 10.1016/0921-5093(94)90325-5
  • [19] M. Petrenec, J. Polák, K. Obrtlík, J. Man, Acta Mater. 54, 3429 (2006), doi: 10.1016/j.actamat.2006.03.046
  • [20] J. Man, K. Obrtlik, J. Polák, Philos. Mag. 89, 1295 (2009), doi: 10.1080/14786430902917616
  • [21] Z.S. Basinski, S.J. Basinski, Prog. Mater. Sci. 36, 89 (1992), doi: 10.1016/0079-6425(92)90006-S
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n450kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.