Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 670-674
Article title

Anisotropic Elastic and Acoustic Properties of Bulk Graphene Nanoplatelets Consolidated by Spark Plasma Sintering

Title variants
Languages of publication
Elastic anisotropy and acoustic attenuation in bulk material consisting of consolidated graphene nanoplatelets are studied. The material was prepared by spark plasma sintering, and exhibits highly anisotropic microstructure with the graphene nanoplatelets oriented perpendicular to the spark plasma sintering compression axis. The complete tensor of elastic constants is obtained using a combination of two ultrasonic methods: the through-transmission method and the resonant ultrasound spectroscopy. It is shown that the examined material exhibits very strong anisotropy both in the elasticity (the Young moduli in directions parallel to the graphene nanoplatelets and perpendicular to them differ by more than 20 times) and in the attenuation, where the dissipative effect of the internal friction in the graphene nanoplatelets combines with strong scattering losses due to the porosity. The results are compared with those obtained for ceramic-matrix/graphene nanoplatelet composites by the same ultrasonic methods.
Physical description
  • [1] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008), doi: 10.1126/science.1157996
  • [2] K.H. Michel, B. Verberck, Phys. Status Solidi B 245, 2177 (2008), doi: 10.1002/pssb.200879604
  • [3] A. Nieto, D. Lahiri, A. Agarwal, Mater. Sci. Eng. A 582, 338 (2013), doi: 10.1016/j.msea.2013.06.006
  • [4] L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, ACS Nano 5, 3182 (2011), doi: 10.1021/nn200319d
  • [5] O. Malek, J. González-Julián, J. Vleugels, W. Vanderauwera, B. Lauwers, M. Belmonte, Mater. Today 14, 496 (2011), doi: 10.1016/S1369-7021(11)70214-0
  • [6] C. Ramirez, L. Garzón, P. Miranzo, M.I. Osendi, C. Ocal, Carbon 49, 3873 (2011), doi: 10.1016/j.carbon.2011.05.025
  • [7] G.D. Zhan, J.D. Kuntz, H. Wang, C.M. Wang, A.K. Mukherjee, Philos. Mag. Lett. 84, 419 (2004), doi: 10.1080/09500830410001728345
  • [8] C. Ramírez, S.M. Vega-Diaz, A. Morelos-Gómez, F.M. Figueiredo, M. Terrones, M.I. Osendi, M. Belmonte, P. Miranzo, Carbon 57, 425 (2013), doi: 10.1016/j.carbon.2013.02.015
  • [9] P. Miranzo, E. García, C. Ramírez, J. González-Julián, M. Belmonte, M.I. Osendi, J. Eur. Ceram. Soc. 32, 1847 (2012), doi: 10.1016/j.jeurceramsoc.2012.01.026
  • [10] H. Seiner, P. Sedlák, M. Koller, M. Landa, C. Ramírez, M.I. Osendi, M. Belmonte, Compos. Sci. Technol. 75, 93 (2013), doi: 10.1016/j.compscitech.2012.12.003
  • [11] A. Nieto, D. Lahiri, A. Agarwal, Carbon 50, 4068 (2012), doi: 10.1016/j.carbon.2012.04.054
  • [12] M. Levy, H.E. Bass, R.R. Stern, Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. 1, Dynamic Methods for Measuring the Elastic Properties of Solids, Academic Press, New York 2000
  • [13] R.G. Leisure, F.A. Willis, J. Phys. Condens. Matter 9, 6001 (1997), doi: 10.1088/0953-8984/9/28/002
  • [14] P. Sedlák, H. Seiner, J. Zídek, M. Janovská, M. Landa, Exp. Mech. 54, 1073 (2014), doi: 10.1007/s11340-014-9862-6
  • [15] M. Landa, P. Sedlák, H. Seiner, L. Heller, L. Bicanová, P. Šittner, V. Novák, Appl. Phys. A 96, 557 (2009), doi: 10.1007/s00339-008-5047-4
  • [16] R. Truell, C. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics, Academic Press, New York 1969
  • [17] M. Janovská, P. Sedlák, H. Seiner, M. Landa, P. Marton, P. Ondrejkovič, J. Hlinka, J. Phys. Condens. Matter 24, 385404 (2012), doi: 10.1088/0953-8984/24/38/385404
  • [18] E.J. Seldin, C.W. Nezbeda, J. Appl. Phys. 41, 3389 (1970), doi: 10.1063/1.1659428
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.