Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Three-dimensional electron diffraction tomography allows one to obtain structure information from nanocrystals. However, in order to get accurate results the dynamical theory must be used due to the strong dynamical interaction between electrons and matter. Full structure refinement using dynamical theory has been in use for some time, in spite of being hampered by the fact that the intensities are very sensitive to variations of thickness and of the orientation of the sample. A remedy to this problem is the technique called precession electron diffraction. The use of precession electron diffraction in combination with electron diffraction tomography results in more accurate structure parameters and lower figures of merit in the structure refinement. The principles of electron diffraction tomography, precession electron diffraction and dynamical refinement will be demonstrated on the structural analysis of a nanowire of Ni₃Si₂.
Discipline
- 61.46.Km: Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires)
- 61.66.-f: Structure of specific crystalline solids(for surface structure, see 68.35.B-)
- 61.05.J-: Electron diffraction and scattering(for electron diffractometers, see 07.78.+s)
Journal
Year
Volume
Issue
Pages
651-653
Physical description
Dates
published
2015-10
Contributors
author
- Department of Physics of Materials, Charles University, Prague, Czech Republic
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
author
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
author
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
References
- [1] U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert, Ultramicroscopy 107, 507 (2007), doi: 10.1016/j.ultramic.2006.10.007
- [2] U. Kolb, T. Gorelik, M. Otten, Ultramicroscopy 108, 763 (2008), doi: 10.1016/j.ultramic.2007.12.002
- [3] R. Vincent, P. Midgley, Ultramicroscopy 53, 271 (1994), doi: 10.1016/0304-3991(94)90039-6
- [4] J. Spence, Acta Crystallogr. A49, 231 (1993), doi: 10.1107/S0108767392005087
- [5] L. Palatinus, J. Damien, P. Cuvillier, M. Klementová, W. Shinkler, L. Marks, Acta Crystallogr. A69, 171 (2013), doi: 10.1107/S010876731204946X
- [6] V. Petříček, M. Dušek, L. Palatinus, The Crystallographic Computing System JANA2006, 2006
- [7] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 229, 345 (2014), doi: 10.1515/zkri-2014-1737
- [8] A. Reader, A. van Ommen, P. Weijs, R. Wolters, D. Oostra, Rep. Prog. Phys. 56, 1397 (1992), doi: 10.1088/0034-4885/56/11/002
- [9] L. Palatinus, PETS - program for analysis of electron diffraction data, 2011
- [10] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 40, 786 (2007), doi: 10.1107/S0021889807029238
- [11] G. Pilström, Acta Chem. Scand. 15, 893 (1961), doi: 10.3891/acta.chem.scand.15-0893
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n444kz