Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 643-646
Article title

Atom Probe Tomography Investigations of Modified Early Stage Clustering in Si-Containing Aluminum Alloys

Title variants
Languages of publication
In this paper atom probe tomography is used to explore early stage clustering in aluminum alloys. Two novel concepts for a modification of clustering are discussed. Control of early stage clustering is welcome from an application point of view since clustering deteriorates strength evolution during the industrial heat treatment of the important class of Al-Mg-Si precipitation-hardenable alloys. Nanoscale early stage clusters are very difficult to observe and atom probe tomography is the best technique to visualize and chemically measure Si or Mg-containing clusters in aluminum alloys. Restrictions remain in achieving the ultimate quantification of such small solute aggregates by atom probe tomography, such as detection efficiency, local magnification effects, surface migration of solute atoms, and unresolved issues with the reconstruction procedure. Here we investigate one of these restricting effects, namely the migration of solute atoms during atom probe tomography measurements. In particular Si is found to be preferentially localized or absent at certain crystallographic poles in aluminum, which derogates the experimental results gained from atom probe tomography studies of clustering in Si-containing aluminum alloys. This artifact is investigated for different specimen temperatures, detection rates and pulse fractions during atom probe tomography measurements. Optimal strategies to analyze small-scale solute clusters in Si-containing aluminum alloys are presented.
Physical description
  • [1] C. Kammer, Aluminium Handbook, Beuth, Berlin 2011
  • [2] C.D. Marioara, S.J. Andersen, J.E. Jansen, H.W. Zandbergen, Acta Mater. 51, 789 (2003), doi: 10.1016/S1359-6454(02)00470-6
  • [3] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Acta Mater. 59, 3352 (2011), doi: 10.1016/j.actamat.2011.02.010
  • [4] J. Banhart, C.S.T. Chang, Z.Q. Liang, N. Wanderka, M.D.H. Lay, A.J. Hill, Adv. Eng. Mater. 12, 559 (2010), doi: 10.1002/adem.201000041
  • [5] S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S.S.A. Gerstl, J.F. Löffler, P.J. Uggowitzer, Scr. Mater. 89, 53 (2014), doi: 10.1016/j.scriptamat.2014.06.025
  • [6] S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S.S.A. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler, P.J. Uggowitzer, Phys. Rev. Lett. 112, 225701 (2014), doi: 10.1103/PhysRevLett.112.225701
  • [7] J. Buha, R.N. Lumley, A.G. Crosky, K. Hono, Acta Mater. 55, 3015 (2007), doi: 10.1016/j.actamat.2007.01.006
  • [8] M. Murayama, K. Hono, M. Saga, M. Kikuchi, Mater. Sci. Eng. 250, 127 (1998), doi: 10.1016/S0921-5093(98)00548-6
  • [9] M. Murayama, K. Hono, Acta Mater. 47, 1537 (1999), doi: 10.1016/S1359-6454(99)00033-6
  • [10] D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy 95, 215 (2003), doi: 10.1016/S0304-3991(02)00319-4
  • [11] F. De Geuser, W. Lefebvre, D. Blavette, Philos. Mag. Lett. 86, 227 (2006), doi: 10.1080/09500830600643270
  • [12] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46, 3893 (1998), doi: 10.1016/S1359-6454(98)00059-7
  • [13] M. Murayama, K. Hono, W.F. Miao, D.E. Laughlin, Metall. Trans. A 32, 239 (2001), doi: 10.1007/s11661-001-0254-z
  • [14] A. Serizawa, S. Hirosawa, T. Sato, Metall. Trans. A 39, 243 (2008), doi: 10.1007/s11661-007-9438-5
  • [15] C.S.T. Chang, I. Wieler, N. Wanderka, J. Banhart, Ultramicroscopy 109, 585 (2009), doi: 10.1016/j.ultramic.2008.12.002
  • [16] P.A. Rometsch, L.F. Cao, X.Y. Xiong, B.C. Muddle, Ultramicroscopy 111, 690 (2011), doi: 10.1016/j.ultramic.2010.11.009
  • [17] L. Cao, P.A. Rometsch, M.J. Couper, Mater. Sci. Eng. A 559, 257 (2013), doi: 10.1016/j.msea.2012.08.093
  • [18] R.K.W. Marceau, A. De Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Acta Mater. 61, 7285 (2013), doi: 10.1016/j.actamat.2013.08.033
  • [19] M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith, Atom Probe Field Ion Microscopy, Oxford University Press, Oxford 1996
  • [20] B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy 113, 182 (2012), doi: 10.1016/j.ultramic.2011.06.005
  • [21] B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy, Springer, New York 2012, doi: 10.1007/978-1-4614-3436-8
  • [22] R. Gomer, Rep. Prog. Phys. 53, 917 (1990), doi: 10.1088/0034-4885/53/7/002
  • [23] E.A. Marquis, F. Vurpillot, Microsc. Microanal. 14, 561 (2008), doi: 10.1017/S1431927608080793
  • [24] E.A. Marquis, J.M. Hyde, Mater. Sci. Eng. R 69, 37 (2010), doi: 10.1016/j.mser.2010.05.001
  • [25] D.J. Larson, T.J. Prose, R.M. Ulfig, B.P. Geiser, T.F. Kelly, Local Electrode Atom Probe Tomography, Springer, New York 2013, doi: 10.1007/978-1-4614-8721-0
  • [26] F. Danoix, M.K. Miller, A. Bigot, Ultramicroscopy 89, 177 (2001), doi: 10.1016/S0304-3991(01)00098-5
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.