PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 574-577
Article title

Mechanisms of Plastic Deformation in Ti-Nb-Zr-Ta Based Biomedical Alloys with Fe and Si Content

Content
Title variants
Languages of publication
EN
Abstracts
EN
Specialized beta titanium alloys containing biocompatible elements (Nb, Zr, Ta) are increasingly considered as a material for orthopaedic implants. In this study, small additions of Fe and Si are used to increase the strength of commercial Ti-35Nb-7Zr-5Ta (TNZT) alloy. Six different advanced alloys with iron content up to 2 wt% and silicon content up to 1 wt% were manufactured by arc melting and hot forging. Flow curves were determined from tensile tests carried out at room temperature. The yield stress is increased from 450 MPa to 700 MPa due to small Fe and Si additions. Fe causes solid solution strengthening exhibited by sharp yield point and significant work hardening. (Ti,Zr)₅Si₃ intermetallic particles further increase the strength via precipitation hardening. An unusual serrated yielding behaviour of benchmark TNZT alloy is caused by twinning as shown by acoustic emission measurement and electron backscattered diffraction analysis.
Keywords
Contributors
author
  • Charles University in Prague, Department of Physics of Materials, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
author
  • Charles University in Prague, Department of Physics of Materials, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
author
  • Charles University in Prague, Department of Physics of Materials, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
author
  • Charles University in Prague, Department of Physics of Materials, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
References
  • [1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397 (2009), doi: 10.1016/j.pmatsci.2008.06.004
  • [2] H.J. Rack, J.I. Qazi, Mater. Sci. Eng. C 26, 1269 (2006), doi: 10.1016/j.msec.2005.08.032
  • [3] M. Long, H.J. Rack, Biomaterials 19, 1621 (1998), doi: 10.1016/S0142-9612(97)00146-4
  • [4] K.S. Katti, Coll. Surf. B Biointerfaces 39, 133 (2004), doi: 10.1016/j.colsurfb.2003.12.002
  • [5] Y. Okazaki, E. Gotoh, Biomaterials 26, 11 (2005), doi: 10.1016/j.biomaterials.2004.02.005
  • [6] S. Rao, Y. Okazaki, T. Tateishi, T. Ushida, Y. Ito, Mater. Sci. Eng. C 4, 311 (1997), doi: 10.1016/S0928-4931(97)00016-7
  • [7] M. Abdel-Hady Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013), doi: 10.1016/j.jmbbm.2012.11.014
  • [8] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243, 244 (1998), doi: 10.1016/S0921-5093(97)00808-3
  • [9] T. Ahmed, H.J. Rack, Alloy of titanium, zirconium, niobium and tantalum for prosthetics, US Patent 5871595 A, 1999
  • [10] P.L. Ferrandini, F.F. Cardoso, S.A. Souza, C.R. Afonso, R. Caram, J. Alloys Comp. 433, 207 (2007), doi: 10.1016/j.jallcom.2006.06.094
  • [11] N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Mater. Sci. Eng. C 25, 370 (2005), doi: 10.1016/j.msec.2005.04.003
  • [12] E.W. Collings, H.L. Gegel, Scr. Metall. 7, 437 (1973), doi: 10.1016/0036-9748(73)90092-6
  • [13] S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, S.R. Seagle, Metall. Trans. A 18, 2015 (1987), doi: 10.1007/BF02647074
  • [14] T.J. Headley, H.J. Rack, Metall. Trans. A 10, 909 (1979), doi: 10.1007/BF02658310
  • [15] G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, Ohio, USA 1993
  • [16] K. Chaudhuri, J.H. Perepezko, Metall. Trans. A 25, 1109 (1994), doi: 10.1007/BF02652286
  • [17] J. Bohlen, F. Chmelík, P. Dobroň, D. Letzig, P. Lukáč, K.U. Kainer, J. Alloys Comp. 378, 214 (2004), doi: 10.1016/j.jallcom.2003.10.102
  • [18] P. Dobroň, F. Chmelík, K. Parfenenko, D. Letzig, J. Bohlen, Acta Phys. Pol. A 122, 593 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/122/a122z3p41.pdf
  • [19] K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, J. Mech. Behav. Biomed. Mater. 9, 214 (2012), doi: 10.1016/j.jmbbm.2012.01.011
  • [20] F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, Ohio, USA 2008
  • [21] I.S. Golovin, M.U. Kollerov, E.V. Schinaeva, J. Phys. IV 06, 289 (1996), doi: 10.1051/jp4:1996862
  • [22] R.J. Grylls, S. Banerjee, S. Perungulam, R. Wheeler, H.L. Fraser, Intermetallics 6, 749 (1998), doi: 10.1016/S0966-9795(98)00032-6
  • [23] X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida, Mater. Trans. 50, 1576 (2009), doi: 10.2320/matertrans.M2009059
  • [24] F. Geng, M. Niinomi, M. Nakai, Mater. Sci. Eng. A 528, 5442 (2011), doi: 10.1016/j.msea.2011.03.064
  • [25] E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64, 1110 (2011), doi: 10.1016/j.scriptamat.2011.02.033
  • [26] J.W. Christian, S. Mahajan, Progr. Mater. Sci. 39, 1 (1995), doi: 10.1016/0079-6425(94)00007-7
  • [27] X.H. Min, X. Chen, S. Emura, K. Tsuchiya, Scr. Mater. 69, 393 (2013), doi: 10.1016/j.scriptamat.2013.05.027
  • [28] X.H. Min, K. Tsuzaki, S. Emura, T. Sawaguchi, S. Ii, K. Tsuchiya, Mater. Sci. Eng. A 579, 164 (2013), doi: 10.1016/j.msea.2013.04.119
  • [29] S. Banerjee, U.M. Naik, Acta Mater. 44, 3667 (1996), doi: 10.1016/1359-6454(96)00012-2
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n425kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.